SPECIAL TOPICS

Research Progress on the Effects of Engineered Nanomaterials on Higher Plant Growth

Expand
  • Laboratory of Natural Product Pesticide, College of Plant Protection, Southwest University, Chongqing 400716, China

Received date: 2022-06-22

  Accepted date: 2022-10-24

  Online published: 2023-01-13

Abstract

Due to their nanoscale effects and excellent physicochemical properties, engineering nanomaterials (ENMs) have been increasingly applied in various fields during the last decade. The biological effects of these ENMs on higher plants and the risk assessment of their ecological effects have become research hotspots. To comprehensively understand the effects of ENMs on higher plants in ecosystems, this paper reviews the effects of several ENMs (metal nanomaterials, metal oxide nanomaterials, carbon-based nanomaterials) on the growth of higher plants and their mechanisms. These ENMs could inhibit plant growth by reducing the seed germination rate, inducing relative reactive oxygen production, enhancing cell membrane permeability and directly damaging roots and can also promote plant growth by enhancing photosynthesis, increasing root activity, strengthening water absorption and enhancing plant metabolic enzyme activity. The influencing factors of ENMs on plant biological effects were further analyzed, including plant species, nanomaterial size and shape, nanomaterial surface characteristics, nanomaterial concentration and treatment time, and plant growth medium. Finally, based on the real soil environment, long-term and low-dose effects, and plant absorption and transportation, we propose the future research associated with the interaction between ENMs and higher plants, aiming to provide a reference for the efficient use of ENMs in agricultural production.

Cite this article

Chen Juanni, Zhu Yunsong, Song Kun, Ding Wei . Research Progress on the Effects of Engineered Nanomaterials on Higher Plant Growth[J]. Chinese Bulletin of Botany, 2023 , 58(5) : 813 -830 . DOI: 10.11983/CBB22130

References

[1] 曹际玲, 冯有智, 林先贵 (2016). 人工纳米材料对植物-微生物影响的研究进展. 土壤学报 53, 1-11.
[2] 陈娟妮, 蔡璘, 李石力, 杨亮, 丁伟 (2019). 纳米技术在植物病害防控中应用的研究进展. 植物保护学报 46, 142-150.
[3] 陈娟妮, 鲁梅, 丁伟 (2021). 纳米氧化锌对烟草疫霉菌的抑菌作用研究. 植物医生 34(2), 34-40.
[4] 郭敏 (2016). 典型人工纳米材料对水稻的植物毒性研究. 硕士论文. 长沙: 湖南大学. pp. 1-70.
[5] 金盛杨, 王玉军, 汪鹏, 李连祯, 周东美 (2010). 不同培养介质中纳米氧化铜对小麦毒性的影响. 生态毒理学报 5, 842-848.
[6] 兰丽贞, 赵群芬 (2012). 纳米TiO2在拟南芥中的富集、转运及对其生长和生理的影响. 环境科学学报 38, 837-846.
[7] 李晶, 郭亮, 崔海信, 崔博, 刘国强 (2020). 纳米农药在植物中的吸收转运研究进展. 植物学报 55, 513-528.
[8] 孙耀琴, 申聪聪, 葛源 (2016). 典型纳米材料的土壤微生物效应研究进展. 生态毒理学报 11(5), 2-13.
[9] 汪玉洁, 陈日远, 刘厚诚, 宋世威, 孙光闻 (2017). 纳米材料在农业上的应用及其对植物生长和发育的影响. 植物生理学报 53, 933-942.
[10] 叶青, 闫晓燕, 陈慧泽, 冯金林, 韩榕 (2022). 氮掺杂石墨烯量子点对拟南芥主根生长方向的影响. 植物学报 57, 623-634.
[11] 张海, 彭程, 杨建军, 施积炎 (2013). 金属型纳米颗粒对植物的生态毒理效应研究进展. 应用生态学报 24, 885-892.
[12] 庄文, 陈青, 周凤霞 (2016). 水环境中工程纳米颗粒物的生态毒理学机理及理想模式生物的筛选. 生态学报 36, 5956-5966.
[13] Abdel Latef AAH, Srivastava AK, El-sadek MSA, Kordrostami M, Tran LSP (2018). Titanium dioxide nanoparticles improve growth and enhance tolerance of broad bean plants under saline soil conditions. Land Degrad Dev 29, 1065-1073.
[14] Aghdam MTB, Mohammadi H, Ghorbanpour M (2016). Effects of nanoparticulate anatase titanium dioxide on physiological and biochemical performance of Linum usitatissimum (Linaceae) under well-watered and drought stress conditions. Braz J Bot 39, 139-146.
[15] Alharby HF, Metwali EMR, Fuller MP, Aldhebiani AY (2016). The alteration of mRNA expression of SOD and GPX genes, and proteins in tomato (Lycopersicon esculentum Mill) under stress of NaCl and/or ZnO nanoparticles. Saudi J Biol Sci 23, 773-781.
[16] Alidoust D, Isoda A (2013). Effect of γFe2O3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): foliar spray versus soil amendment. Acta Physiol Plant 35, 3365-3375.
[17] Almeelbi T, Bezbaruah A (2014). Nanoparticle-sorbed phos- phate: iron and phosphate bioavailability studies with Spinacia oleracea and Selenastrum capricornutum. ACS Sustain Chem Eng 2, 1625-1632.
[18] Anjum NA, Singh N, Singh MK, Shah ZA, Duarte AC, Pereira E, Ahmad I (2013). Single-bilayer graphene oxide sheet tolerance and glutathione redox system significance assessment in faba bean (Vicia faba L.). J Nanopart Res 15, 1770.
[19] Asli S, Neumann PM (2009). Colloidal suspensions of clay or titanium dioxide nanoparticles can inhibit leaf growth and transpiration via physical effects on root water transport. Plant Cell Environ 32, 577-584.
[20] Begum P, Fugetsu B (2012). Phytotoxicity of multi-walled carbon nanotubes on red spinach (Amaranthus tricolor L.) and the role of ascorbic acid as an antioxidant. J Hazard Mater 243, 212-222.
[21] Begum P, Ikhtiari R, Fugetsu B (2011). Graphene phytotoxicity in the seedling stage of cabbage, tomato, red spinach, and lettuce. Carbon 49, 3907-3919.
[22] Begum P, Ikhtiari R, Fugetsu B, Matsuoka M, Akasaka T, Watari F (2012). Phytotoxicity of multi-walled carbon nanotubes assessed by selected plant species in the seedling stage. Appl Surf Sci 262, 120-124.
[23] Burman U, Saini M, Praveen-Kumar (2013). Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicol Environ Chem 95, 605-612.
[24] Ca?as JE, Long M, Nations S, Vadan R, Dai L, Luo MX, Ambikapathi R, Lee EH, Olszyk D (2008). Effects of functionalized and nonfunctionalized single-walled carbon nanotubes on root elongation of select crop species. Environ Toxicol Chem 27, 1922-1931.
[25] Carpita NC, Gibeaut DM (1993). Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3, 1-30.
[26] Chakravarty D, Erande MB, Late DJ (2015). Graphene quantum dots as enhanced plant growth regulators: effects on coriander and garlic plants. J Sci Food Agric 95, 2772-2778.
[27] Chen JN, Yang L, Li SL, Ding W (2018). Various physio-logical response to graphene oxide and amine-functiona-lized graphene oxide in wheat (Triticum aestivum). Molecules 23, 1104.
[28] Chen LY, Wang CL, Yang SN, Guan S, Zhang QQ, Shi MY, Yang ST, Chen CY, Chang XL (2019). Chemical reduction of graphene enhances in vivo translocation and photosynthetic inhibition in pea plants. Environ Sci Nano 6, 1077-1088.
[29] Cheng F, Liu YF, Lu GY, Zhang XK, Xie LL, Yuan CF, Xu BB (2016). Graphene oxide modulates root growth of Brassica napus L. and regulates ABA and IAA concentra-tion. J Plant Physiol 193, 57-63.
[30] Cui D, Zhang P, Ma YH, He X, Li YY, Zhang J, Zhao YC, Zhang ZY (2014). Effect of cerium oxide nanoparticles on asparagus lettuce cultured in an agar medium. Environ Sci Nano 1, 459-465.
[31] Dimkpa CO, McLean JE, Latta DE, Manangón E, Britt DW, Johnson WP, Boyanov MI, Anderson AJ (2012). CuO and ZnO nanoparticles: phytotoxicity, metal speciation, and induction of oxidative stress in sand-grown wheat. J Nanopart Res 14, 1125.
[32] Du WC, Sun YY, Ji R, Zhu JG, Wu JC, Guo HY (2011). TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13, 822-828.
[33] Elshayb OM, Farroh KY, Amin HE, Atta AM (2021). Green synthesis of zinc oxide nanoparticles: fortification for rice grain yield and nutrients uptake enhancement. Molecules 26, 584.
[34] Falco WF, Scherer MD, Oliveira SL, Wender H, Colbeck I, Lawson T, Caires ARL (2020). Phytotoxicity of silver nanoparticles on Vicia faba: evaluation of particle size effects on photosynthetic performance and leaf gas exchan-ge. Sci Total Environ 701, 134816.
[35] Frazier TP, Burklew CE, Zhang BH (2014). Titanium dioxide nanoparticles affect the growth and microRNA ex-pression of tobacco (Nicotiana tabacum). Funct Integr Ge- nomics 14, 75-83.
[36] Gao FQ, Hong FS, Liu C, Zheng L, Su MY, Wu X, Yang F, Wu C, Yang P (2006). Mechanism of nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biol Trace Elem Res 111, 239-253.
[37] Gao JG, Xu GD, Qian HH, Liu P, Zhao P, Hu Y (2013). Effects of nano-TiO2 on photosynthetic characteristics of Ulmus elongata seedlings. Environ Pollut 176, 63-70.
[38] García-Gómez C, Obrador A, González D, Babín M, Fernández MD (2018). Comparative study of the phyto-toxicity of ZnO nanoparticles and Zn accumulation in nine crops grown in a calcareous soil and an acidic soil. Sci Total Environ 644, 770-780.
[39] Ghodake G, Seo YD, Park D, Lee DS (2010). Phytotoxicity of carbon nanotubes assessed by Brassica juncea and Phaseolus mungo. J Nanoelectron Optoe 5, 157-160.
[40] Ghosh M, Bandyopadhyay M, Mukherjee A (2010). Genotoxicity of titanium dioxide (TiO2) nanoparticles at two trophic levels: plant and human lymphocytes. Chemosphere 81, 1253-1262.
[41] Gui X, Zhang ZY, Liu ST, Ma YH, Zhang P, He X, Li YY, Zhang J, Li HF, Rui YK, Liu LM, Cao WD (2015). Fate and phytotoxicity of CeO2 nanoparticles on lettuce cultured in the potting soil environment. PLoS One 10, e0134261.
[42] Haghighi M, da Silva JAT (2014). The effect of N-TiO2 on tomato, onion, and radish seed germination. J Crop Sci Biotechnol 17, 221-227.
[43] Hao Y, Yu FF, Lv RT, Ma CX, Zhang ZT, Rui YK, Liu LM, Cao WD, Xing BS (2016). Carbon nanotubes filled with different ferromagnetic alloys affect the growth and de-velopment of rice seedlings by changing the C:N ratio and plant hormones concentrations. PLoS One 11, e0157264.
[44] Hasanpour H, Maali-Amir R, Zeinali H (2015). Effect of TiO2 nanoparticles on metabolic limitations to photosyn-thesis under cold in chickpea. Russ J Plant Physiol 62, 779-787.
[45] Hong FS, Zhou J, Liu C, Yang F, Wu C, Zheng L, Yang P (2005). Effect of nano-TiO2 on photochemical reaction of chloroplasts of spinach. Biol Trace Elem Res 105, 269-279.
[46] Hotze EM, Phenrat T, Lowry GV (2010). Nanoparticle ag-gregation: challenges to understanding transport and rea-ctivity in the environment. J Environ Qual 39, 1909-1924.
[47] Hu XG, Lu KC, Mu L, Kang J, Zhou QX (2014). Interactions between graphene oxide and plant cells: regulation of cell morphology, uptake, organelle damage, oxidative effects and metabolic disorders. Carbon 80, 665-676.
[48] Hu XG, Zhou QX (2014). Novel hydrated graphene ribbon unexpectedly promotes aged seed germination and root differentiation. Sci Rep 4, 3782.
[49] Iannone MF, Groppa MD, de Sousa ME, van Raap MBF, Benavides MP (2016). Impact of magnetite iron oxide nanoparticles on wheat (Triticum aestivum L.) development: evaluation of oxidative damage. Environ Exp Bot 131, 77-88.
[50] Jeyasubramanian K, Thoppey UUG, Hikku GS, Selva-kumar N, Subramania A, Krishnamoorthy K (2016). Enhancement in growth rate and productivity of spinach grown in hydroponics with iron oxide nanoparticles. RSC Adv 6, 15451-15459.
[51] Jordan JT, Oates RP, Subbiah S, Payton PR, Singh KP, Shah SA, Green MJ, Klein DM, Ca?as-Carrell JE (2020). Carbon nanotubes affect early growth, flowering time and phytohormones in tomato. Chemosphere 256, 127042.
[52] Jo?ko I (2019). Copper and zinc fractionation in soils treated with CuO and ZnO nanoparticles: the effect of soil type and moisture content. Sci Total Environ 653, 822-832.
[53] Jo?ko I, Oleszczuk P (2013). Influence of soil type and environmental conditions on ZnO, TiO2 and Ni nanoparti-cles phytotoxicity. Chemosphere 92, 91-99.
[54] Ke MJ, Ye YZ, Zhang ZY, Gillings M, Qu Q, Xu NH, Xu LS, Lu T, Wang JD, Qian HF (2021). Synergistic effects of glyphosate and multiwall carbon nanotubes on Arabidop-sis thaliana physiology and metabolism. Sci Total Environ 769, 145156.
[55] Khalofah A, Kilany M, Migdadi H (2021). Phytostimulatory influence of Comamonas testosteroni and silver nanopar-ticles on Linum usitatissimum L. under salinity stress. Plants 10, 790.
[56] Khodakovskaya M, Dervishi E, Mahmood M, Xu Y, Li ZR, Watanabe F, Biris AS (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3, 3221-3227.
[57] Khodakovskaya MV, de Silva K, Nedosekin DA, Dervishi E, Biris AS, Shashkov EV, Galanzha EI, Zharov VP (2011). Complex genetic, photothermal, and photoacous-tic analysis of nanoparticle-plant interactions. Proc Natl Acad Sci USA 108, 1028-1033.
[58] Khodakovskaya MV, Kim BS, Kim JN, Alimohammadi M, Dervishi E, Mustafa T, Cernigla CE (2013). Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial commu-nity. Small 9, 115-123.
[59] Krishnaraj C, Jagan EG, Ramachandran R, Abirami SM, Mohan N, Kalaichelvan PT (2012). Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process Biochem 47, 651-658.
[60] Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu JJ, Wanzer MB, Woloschak GE, Smalle JA (2010). Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett 10, 2296-2302.
[61] Lahiani MH, Dervishi E, Chen JH, Nima Z, Gaume A, Biris AS, Khodakovskaya MV (2013). Impact of carbon nano-tube exposure to seeds of valuable crops. ACS Appl Ma-ter Interfaces 5, 7965-7973.
[62] Larue C, Castillo-Michel H, Sobanska S, Cécillon L, Bureau S, Barthès V, Ouerdane L, Carrière M, Sarret G (2014). Foliar exposure of the crop Lactuca sativa to silver nanoparticles: evidence for internalization and changes in Ag speciation. J Hazard Mater 264, 98-106.
[63] Le Van N, Ma CX, Shang JY, Rui YK, Liu ST, Xing BS (2016). Effects of CuO nanoparticles on insecticidal activity and phytotoxicity in conventional and transgenic cotton. Chemosphere 144, 661-670.
[64] Lee WM, An YJ, Yoon H, Kweon HS (2008). Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triti-cum aestivum): plant agar test for water-insoluble nanoparticles. Environ Toxicol Chem 27, 1915-1921.
[65] Lee WM, Kwak JI, An YJ (2012). Effect of silver nanoparti-cles in crop plants Phaseolus radiatus and Sorghum bi-color: media effect on phytotoxicity. Chemosphere 86, 491-499.
[66] Li JL, Hu J, Ma CX, Wang YQ, Wu C, Huang J, Xing BS (2016). Uptake, translocation and physiological effects of magnetic iron oxide (γ-Fe2O3) nanoparticles in corn (Zea mays L.). Chemosphere 159, 326-334.
[67] Li JL, Hu J, Xiao L, Gan QL, Wang YQ (2017). Physiologi-cal effects and fluorescence labeling of magnetic iron oxide nanoparticles on citrus (Citrus reticulata) seedlings. Water Air Soil Poll 228, 52.
[68] Li MS, Zhang P, Adeel M, Guo ZL, Chetwynd AJ, Ma CX, Bai TH, Hao Y, Rui YK (2021). Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ Pollut 269, 116134.
[69] Lin DH, Xing BS (2008). Root uptake and phytotoxicity of ZnO nanoparticles. Environ Sci Technol 42, 5580-5585.
[70] Liu SJ, Wei HM, Li ZY, Li S, Yan H, He Y, Tian ZH (2015). Effects of graphene on germination and seedling morp-hology in rice. J Nanosci Nanotechnol 15, 2695-2701.
[71] López-Moreno ML, de la Rosa G, Hernández-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2010). X-ray absorption spectroscopy (XAS) corroboration of the up-take and storage of CeO2 nanoparticles and assessment of their differential toxicity in four edible plant species. J Agric Food Chem 58, 3689-3693.
[72] Lv ZY, Sun HD, Du W, Li RY, Mao H, Kopittke PM (2021). Interaction of different-sized ZnO nanoparticles with maize (Zea mays): accumulation, biotransformation and phytotoxicity. Sci Total Environ 796, 148927.
[73] Ma XM, Geiser-Lee J, Deng Y, Kolmakov A (2010a). In-teractions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Sci Total Environ 408, 3053-3061.
[74] Ma YH, Kuang LL, He X, Bai W, Ding YY, Zhang ZY, Zhao YL, Chai ZF (2010b). Effects of rare earth oxide nanopar-ticles on root elongation of plants. Chemosphere 78, 273-279.
[75] Majumdar S, Peralta-Videa JR, Trujillo-Reyes J, Sun YP, Barrios AC, Niu GH, Flores-Margez JP, Gardea-Torresdey JL (2016). Soil organic matter influences cerium translocation and physiological processes in kidney bean plants exposed to cerium oxide nanoparticles. Sci Total Environ 569-570, 201-211.
[76] Matras E, Gorczyca A, Pociecha E, Przemieniecki SW, O?wieja M (2022). Phytotoxicity of silver nanoparticles with different surface properties on monocots and dicots model plants. J Soil Sci Plant Nutr 22, 1647-1664.
[77] Miralles P, Church TL, Harris AT (2012). Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ Sci Technol 46, 9224-9239.
[78] Mohammadi R, Maali-Amiri R, Abbasi A (2013). Effect of TiO2 nanoparticles on chickpea response to cold stress. Biol Trace Elem Res 152, 403-410.
[79] Mondal A, Basu R, Das S, Nandy P (2011). Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect. J Nanopart Res 13, 4519-4528.
[80] Musante C, White JC (2012). Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk- size particles. Environ Toxicol 27, 510-517.
[81] Nair PMG, Chung IM (2014a). A mechanistic study on the toxic effect of copper oxide nanoparticles in soybean (Glycine max L.) root development and lignification of root cells. Biol Trace Elem Res 162, 342-352.
[82] Nair PMG, Chung IM (2014b). Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignification, and molecular le-vel changes. Environ Sci Pollut Res Int 21, 12709-12722.
[83] Nair PMG, Kim SH, Chung IM (2014). Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36, 2947-2958.
[84] Nie GL, Zhao J, He R, Tang YL (2020). CuO nanoparticle exposure impairs the root tip cell walls of Arabidopsis thaliana seedlings. Water Air Soil Poll 231, 324.
[85] Pakrashi S, Jain N, Dalai S, Jayakumar J, Chandrasekaran PT, Raichur AM, Chandrasekaran N, Mukherjee A (2014). In vivo genotoxicity assessment of titanium dioxide nanoparticles by Allium cepa root tip assay at high exposure concentrations. PLoS One 9, e87789.
[86] Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. J Plant Nutr 35, 905-927.
[87] Quah B, Musante C, White JC, Ma XM (2015). Phytotoxicity, uptake, and accumulation of silver with different parti-cle sizes and chemical forms. J Nanopart Res 17, 277.
[88] Raliya R, Nair R, Chavalmane S, Wang WN, Biswas P (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics 7, 1584-1594.
[89] Raliya R, Tarafdar JC (2013). ZnO nanoparticle biosynthe-sis and its effect on phosphorous-mobilizing enzyme se-cretion and gum contents in cluster bean (Cyamopsis tetra- gonoloba L.). Agric Res 2, 48-57.
[90] Rastogi A, Zivcak M, Sytar O, Kalaji HM, He XL, Mbarki S, Brestic M (2017). Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5, 78.
[91] Rico CM, Hong J, Morales MI, Zhao LJ, Barrios AC, Zhang JY, Peralta-Videa JR, Gardea-Torresdey JL (2013a). Effect of cerium oxide nanoparticles on rice: a study involving the antioxidant defense system and in vivo fluorescence imaging. Environ Sci Technol 47, 5635-5642.
[92] Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59, 3485-3498.
[93] Rico CM, Morales MI, McCreary R, Castillo-Michel H, Barrios AC, Hong J, Tafoya A, Lee WY, Varela-Ramirez A, Peralta-Videa JR, Gardea-Torresdey JL (2013b). Cerium oxide nanoparticles modify the antioxidative stress enzyme activities and macromolecule composition in rice seedlings. Environ Sci Technol 47, 14110-14118.
[94] Rizwan M, Ali S, Ali B, Adrees M, Arshad M, Hussain A ur Rehman MZ, Waris AA (2019). Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214, 269-277.
[95] Salehi H, De Diego N, Rad AC, Benjamin JJ, Trevisan M, Lucini L (2021). Exogenous application of ZnO nanopar-ticles and ZnSO4 distinctly influence the metabolic response in Phaseolus vulgaris L. Sci Total Environ 778, 146331.
[96] Schlich K, Hund-Rinke K (2015). Influence of soil proper-ties on the effect of silver nanomaterials on microbial acti-vity in five soils. Environ Pollut 196, 321-330.
[97] Servin A, Elmer W, Mukherjee A, de la Torre-Roche R, Hamdi H, White JC, Bindraban P, Dimkpa C (2015). A review of the use of engineered nanomaterials to sup-press plant disease and enhance crop yield. J Nanopart Res 17, 92.
[98] Shi JY, Peng C, Yang YQ, Yang JJ, Zhang H, Yuan XF, Chen YX, Hu TD (2014). Phytotoxicity and accumulation of copper oxide nanoparticles to the Cu-tolerant plant Els-holtzia splendens. Nanotoxicology 8, 179-188.
[99] Song G, Gao Y, Wu H, Hou WH, Zhang CY, Ma HQ (2012). Physiological effect of anatase TiO2 nanoparticles on Lem- na minor. Environ Toxicol Chem 31, 2147-2152.
[100] Stampoulis D, Sinha SK, White JC (2009). Assay-dependent phytotoxicity of nanoparticles to plants. Environ Sci Technol 43, 9473-9479.
[101] Sun LL, Wang YB, Wang RL, Wang RT, Zhang P, Ju Q, Xu J (2020). Physiological, transcriptomic, and metabolomic analyses reveal zinc oxide nanoparticles modulate plant growth in tomato. Environ Sci Nano 7, 3587-3604.
[102] Syu YY, Hung JH, Chen JC, Chuang HW (2014). Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol Biochem 83, 57-64.
[103] Tabatabaee S, Iranbakhsh A, Shamili M, Ardebili ZO (2021). Copper nanoparticles mediated physiological changes and transcriptional variations in microRNA159 (miR159) and mevalonate kinase (MVK) in pepper; poten-tial benefits and phytotoxicity assessment. J Environ Chem Eng 9, 106151.
[104] Tarafdar JC, Raliya R, Mahawar H, Rathore I (2014). De-velopment of zinc nanofertilizer to enhance crop produc-tion in pearl millet (Pennisetum americanum). Agric Res 3, 257-262.
[105] Thuesombat P, Hannongbua S, Akasit S, Chadchawan S (2014). Effect of silver nanoparticles on rice (Oryza sativa L. cv. ‘KDML 105’) seed germination and seedling growth. Ecotox Environ Safe 104, 302-309.
[106] Tiwari DK, Dasgupta-Schubert N, Cendejas LMV, Villegas J, Montoya LC, García SEB (2014). Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize (Zea mays) and implications for nanoagriculture. Appl Nanosci 4, 577-591.
[107] Tumburu L, Andersen CP, Rygiewicz PT, Reichman JR (2015). Phenotypic and genomic responses to titanium dioxide and cerium oxide nanoparticles in Arabidopsis germinants. Environ Toxicol Chem 34, 70-83.
[108] Velikova V, Petrova N, Kovács L, Petrova A, Koleva D, Tsonev T, Taneva S, Petrov P, Krumova S (2021). Sin-gle-walled carbon nanotubes modify leaf micromorphology, chloroplast ultrastructure and photosynthetic activity of pea plants. Int J Mol Sci 22, 4878.
[109] Venkatachalam P, Priyanka N, Manikandan K, Gane-shbabu I, Indiraarulselvi P, Geetha N, Muralikrishna K, Bhattacharya RC, Tiwari M, Sharma N, Sahi SV (2017). Enhanced plant growth promoting role of phytomolecules coated zinc oxide nanoparticles with P supplementation in cotton (Gossypium hirsutum L.). Plant Physiol Biochem 110, 118-127.
[110] Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakov-skaya MV (2012a). Surface chemistry of carbon nanotu-bes impacts the growth and expression of water channel protein in tomato plants. Small 8, 2328-2334.
[111] Villagarcia H, Dervishi E, de Silva K, Biris AS, Khodakov-skaya MV (2012b). Bioresponse to nanotubes: surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants. S-mall 8, 2327-2327.
[112] Vishwakarma K, Shweta , Upadhyay N, Singh J, Liu SL, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2017). Differential phytotoxic impact of plant mediated silver nanoparticles (AgNPs) and silver nitrate (AgNO3) on Brassica sp. Front Plant Sci 8, 1501.
[113] Vithanage M, Seneviratne M, Ahmad M, Sarkar B, Ok YS (2017). Contrasting effects of engineered carbon nano-tubes on plants: a review. Environ Geochem Health 39, 1421-1439.
[114] Waani SPT, Irum S, Gul I, Yaqoob K, Khalid MU, Ali MA, Manzoo U, Noor T, Ali S, Rizwan M, Arshad M (2021). TiO2 nanoparticles dose, application method and phos-phorous levels influence genotoxicity in rice (Oryza sativa L.), soil enzymatic activities and plant growth. Ecotoxicol Environ Saf 213, 111977.
[115] Wan JP, Wang RT, Wang RL, Ju Q, Wang YB, Xu J (2019). Comparative physiological and transcriptomic analyses reveal the toxic effects of ZnO nanoparticles on plant growth. Environ Sci Technol 53, 4235-4244.
[116] Wang Q, Ebbs SD, Chen YS, Ma XM (2013). Trans-generational impact of cerium oxide nanoparticles on tomato plants. Metallomics 5, 753-759.
[117] Watson JL, Fang T, Dimkpa CO, Britt DW, McLean JE, Jacobson A, Anderson AJ (2015). The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals 28, 101-112.
[118] West JL, Halas NJ (2003). Engineered nanomaterials for biophotonics applications: improving sensing, imaging, and therapeutics. Annu Rev Biomed Eng 5, 285-292.
[119] Xiang L, Zhao HM, Li YW, Huang XP, Wu XL, Zhai T, Yuan Y, Cai QY, Mo CH (2015). Effects of the size and morphology of zinc oxide nanoparticles on the germina-tion of Chinese cabbage seeds. Environ Sci Pollut Res Int 22, 10452.
[120] Yan L, Li PY, Zhao XP, Ji R, Zhao LJ (2020). Physiological and metabolic responses of maize (Zea mays) plants to Fe3O4 nanoparticles. Sci Total Environ 718, 137400.
[121] Yang F, Hong FS, You WJ, Liu C, Gao FQ, Wu C, Yang P (2006). Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biol Trace Elem Res 110, 179-190.
[122] Yang J, Cao WD, Rui YK (2017). Interactions between nano- particles and plants: phytotoxicity and defense mechanisms. J Plant Interact 12, 158-169.
[123] Yang ZM, Deng CH, Wu YP, Dai ZG, Tang Q, Cheng CH, Xu Y, Hu R, Liu C, Chen XJ, Zhang XY, Li AL, Xiong XH, Su JG, Yan A (2021). Insights into the mechanism of multi-walled carbon nanotubes phytotoxicity in Arabidop-sis through transcriptome and m6A methylome analysis. Sci Total Environ 787, 147510.
[124] Yin LY, Cheng YW, Espinasse B, Colman BP, Auffan M, Wiesner M, Rose J, Liu J, Bernhardt ES (2011). More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ Sci Technol 45, 2360-2367.
[125] Yin LY, Colman BP, McGill BM, Wright JP, Bernhardt ES (2012). Effects of silver nanoparticle exposure on germi-nation and early growth of eleven wetland plants. PLoS One 7, e47674.
[126] Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR (2020). Particle size and concentration dependent toxicity of copper oxide nanoparticles (CuONPs) on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. ‘Kowsar’). Sci Total Environ 715, 136994.
[127] Zaytseva O, Neumann G (2016). Phytotoxicity of carbon nanotubes is associated with disturbances of zinc homeo-stasis. Eur Chem Bull 5, 238-244.
[128] Zhang M, Gao B, Chen JJ, Li YC (2015a). Effects of gra-phene on seed germination and seedling growth. J Nanopart Res 17, 78.
[129] Zhang P, Ma YH, Liu ST, Wang GH, Zhang JZ, He X, Zhang J, Rui YK, Zhang ZY (2017a). Phytotoxicity, up-take and transformation of nano-CeO2 in sand cultured romaine lettuce. Environ Pollut 220, 1400-1408.
[130] Zhang P, Zhang RR, Fang XZ, Song TQ, Cai XD, Liu HJ, Du ST (2016). Toxic effects of graphene on the growth and nutritional levels of wheat (Triticum aestivum L.): short- and long-term exposure studies. J Hazard Mater 317, 543-551.
[131] Zhang RC, Zhang HB, Tu C, Hu XF, Li LZ, Luo YM, Christie P (2015b). Phytotoxicity of ZnO nanoparticles and the released Zn(II) ion to corn (Zea mays L.) and cucumber (Cucumis sativus L.) during germination. Envi-ron Sci Pollut Res Int 22, 11109-11117.
[132] Zhang WL, Musante C, White JC, Schwab P, Wang Q, Ebbs SD, Ma XM (2017b). Bioavailability of cerium oxide nanoparticles to Raphanus sativus L. in two soils. Plant Physiol Biochem 110, 185-193.
[133] Zheng L, Hong FS, Lu SP, Liu C (2005). Effect of nano- TiO2 on strength of naturally aged seeds and growth of spinach. Biol Trace Elem Res 104, 83-91.
[134] Zuverza-Mena N, Martínez-Fernández D, Du WC, Her-nandez-Viezcas JA, Bonilla-Bird N, López-Moreno ML, Komárek M, Peralta-Videa JR, Gardea-Torresdey JL (2017). Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses- a review. Plant Physiol Biochem 110, 236-264.
Outlines

/

674-3466/bottom_en.htm"-->