INVITED REVIEWS

Germplasm Resource Innovation of Minor Cereals in China: Advances and Perspectives

Expand
  • 1Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    2CAS Center for Excellence in Molecular Plant Sciences/Institute of Plant Physiology and Ecology, Shanghai 200032, China
    3Hebei Agricultural University, Baoding 071001, China
    4Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
    5Shanxi Agricultural University, Taiyuan 030031, China

Received date: 2022-08-19

  Accepted date: 2022-12-01

  Online published: 2022-12-23

Abstract

In this paper, we reviewed the research status of minor cereals in China—the germplasm conservation, identification and innovative utilization, etc. Furthermore, we analyzed the problems and challenges existing in the basic research of minor cereals in China, and proposed the priorities and development directions.

Cite this article

Jing Wu, Sha Tang, Hongxia Wang, Jinhua Chang, Changyou Liu, Kaixuan Zhang, Yonghui Liu, Yannan Wang, Yuanhuai Han, Xianmin Diao . Germplasm Resource Innovation of Minor Cereals in China: Advances and Perspectives[J]. Chinese Bulletin of Botany, 2023 , 58(1) : 6 -21 . DOI: 10.11983/CBB22197

References

[1] 蔡羽, 杨平, 冯宗云 (2019). 大麦表型多样性分析及优异饲草种质资源筛选. 植物遗传资源学报 20, 920-931.
[2] 曹如槐, 王晓玲, 南城虎, 李怡琳, 王晓呜 (1991). 小豆种质资源对锈病的抗性鉴定研究. 植物病理学报 21(3), 22.
[3] 陈红霖, 胡亮亮, 杨勇, 郝曦煜, 李姝彤, 王素华, 王丽侠, 程须珍 (2020). 481份国内外绿豆种质农艺性状及豆象抗性鉴定评价及遗传多样性分析. 植物遗传资源学报 21, 549-559.
[4] 陈家驹, 王雅儒, 王升文, 吴舒致, 王尧琴 (1984). 抗倒伏谷子种质“六十日”及其衍生系统的应用. 作物品种资源 (3), 30-32, 35.
[5] 陈倩楠, 王轲, 汤沙, 杜丽璞, 智慧, 贾冠清, 赵宝华, 叶兴国, 刁现民 (2018). 以抗除草剂Bar基因稳定转化谷子技术研究. 作物学报 44, 1423-1432.
[6] 陈瑛, 景小兰 (1991). 旱地优质谷新品种晋谷21号. 山西农业科学 (10), 37.
[7] 刁现民 (2022). 育种创新造就谷子种业新发展. 中国种业 (4), 4-7.
[8] 樊有存 (2021). 蚕豆耐盐种质资源筛选与抗盐基因的克隆及表达分析. 硕士论文. 西宁: 青海大学. pp. 1-76.
[9] 范昱, 丁梦琦, 张凯旋, 唐宇, 方沩, 杨克理, 张宗文, 程剑平, 周美亮 (2020). 中国野生荞麦种质资源概况与利用进展. 植物遗传资源学报 21, 1395-1406.
[10] 苟桂珍, 朱健美 (1991). 豌豆品种资源对豌豆蚜抗性筛选鉴定结果. 甘肃农业科技 (1), 29-31.
[11] 韩飞, 诸葛玉平, 娄燕宏, 王会, 张乃丹, 何伟, 晁赢 (2018). 63份谷子种质的耐盐综合评价及耐盐品种筛选. 植物遗传资源学报 19, 685-693.
[12] 韩文智, 曹骥, 王晓玲, 曹如槐 (1991). 菜豆种质资源对豆蚜的抗性鉴定研究. 作物品种资源 (1), 32-33.
[13] 郝晓鹏, 田翔, 王燕, 郜欣, 畅建武 (2016). 山西普通菜豆种质资源籽粒品质分析和评价. 山西农业科学 44, 808-810, 832.
[14] 贺微仙, 郝惠斌, 刘世民, 王文真 (1987). 食用豆的营养品质鉴定. 作物品种资源 (1), 13-17.
[15] 胡兰, 刘可杰, 徐婧, 姜钰, 徐秀德 (2019). 高粱种质资源对黑束病的抗性鉴定与评价. 植物遗传资源学报 20, 550-555.
[16] 胡亮亮, 王素华, 王丽侠, 程须珍, 陈红霖 (2022). 绿豆种质资源苗期耐盐性鉴定及耐盐种质筛选. 作物学报 48, 367-379.
[17] 黄金堂, 李清华, 陈海玲 (2008). 大麦种质资源白粉病抗性鉴定与应用. 植物遗传资源学报 9, 101-104.
[18] 姜钰, 徐婧, 徐秀德, 胡兰 (2015). 高粱三系抗丝黑穗病鉴定与评价. 植物遗传资源学报 16, 417-421.
[19] 金文林, 濮绍京, 赵波, 王丽英, 吴刚, 苏丽丽 (2006). 小豆种质资源子粒品质性状的遗传变异. 作物学报 32, 1223-1230.
[20] 李丰 (2017). 甘薯淀粉合成相关基因的克隆与分子标记开发. 硕士论文. 济南: 山东大学. pp. 56.
[21] 李琳, 于崧, 蒋永超, 张婷婷, 邹春雷, 金珊珊, 郭建华, 梁海芸, 段君君, 于立河 (2016). 芸豆苗期耐盐碱性鉴定及品种筛选研究. 植物生理学报 52, 62-72.
[22] 李玲, 沈宝宇, 张天静, 杨涛, 刘荣, 宗绪晓 (2017). 豌豆种质资源芽期耐旱性评价及耐旱种质筛选. 植物遗传资源学报 18, 778-785.
[23] 李月秋, 彭宏梅, 梁仙, 羊国安, 包世英, 王丽萍 (2002). 我国蚕豆品种资源对蚕豆锈病的抗性鉴定. 植物遗传资源科学 (1), 45-48.
[24] 林澄菲, 张丽华, 李桂凤, 吕潇, 李家义 (1991). 我国大麦种质资源主要品质性状分析. 山东农业科学 (1), 30-32, 35.
[25] 刘春良, 王兰芬, 武晶, 王述民 (2017). 普通菜豆生长习性相关基因定位. 植物遗传资源学报 18, 713-719.
[26] 刘三才, 朱志华, 李为喜, 刘方, 李燕, 黄蓉 (2009). 谷子品种资源微量元素硒和蛋白质含量的测定与评价. 中国农业科学 42, 3812-3818.
[27] 卢文洁, 李春花, 王艳青, 孙道旺, 尹桂芳, 何成兴, 王莉花 (2017). 荞麦轮纹病抗性鉴定方法的建立及荞麦抗病种质资源的筛选. 中国农学通报 33(12), 98-102.
[28] 吕二锁, 张凤英, 蔺瑞明, 包海柱, 刘志萍 (2015). 大麦种质资源苗期根腐病抗性鉴定. 大麦与谷类科学 (3), 30-34.
[29] 马佩勇, 边小峰, 郭小丁, 贾赵东, 禹阳, 谢一芝 (2018). 甘薯全生育期耐盐种质筛选与耐盐性评价. 植物遗传资源学报 19, 546-553.
[30] 濮绍京, 金文林, 史亚俊, 赵波, 万平 (2008). 人工环境鉴定小豆芽苗期耐冷性研究. 植物遗传资源学报 9, 41-45, 50.
[31] 秦岭, 杨延兵, 管延安, 张华文, 王海莲, 刘宾, 陈二影 (2013). 不同生态区主要育成谷子品种芽期耐旱性鉴定. 植物遗传资源学报 14, 146-151.
[32] 秦培友 (2012). 我国主要荞麦品种资源品质评价及加工处理对荞麦成分和活性的影响. 博士论文. 北京: 中国农业科学院. pp. 1-96.
[33] 任长忠, 杨才 (2018). 中国燕麦品种志. 北京: 中国农业出版社. pp. 35.
[34] 单云鹏, 陈新慧, 万平, 赵波, 杨凯, 李奕松 (2019). 小豆种质资源苗期抗旱性评价及抗旱资源筛选. 植物遗传资源学报 20, 1151-1159.
[35] 沈升法, 刘也楠, 李兵, 罗志高, 刘伟明, 吴列洪, 项超 (2022). 基于田间自然诱导法的甘薯基腐病种质资源抗性鉴定与评价研究. 植物遗传资源学报 23, 985-995.
[36] 沈颖超, 张志肖, 孙素丽, 王彦, 范保杰, 刘长友, 王珅, 苏秋竹, 时会影, 朱振东, 田静 (2022). 绿豆种质资源枯萎病抗性鉴定及抗性资源筛选. 植物遗传资源学报 23, 1660-1669.
[37] 孙近友, 邬景禹, 郭小丁, 谢逸萍, 唐君 (1993). 全国甘薯品种资源茎线虫病的抗性鉴定. 作物杂志 (1), 29-30.
[38] 唐代艳 (1990). 湖北省蚕豆地方品种资源的研究与利用. 湖北农业科学 (11), 16-18.
[39] 田茜, 李群, 戴双, 邓翠霞, 张文兰, 颜廷进 (2019). 国外引进豌豆特色种质资源的初步筛选及应用前景. 山东农业科学 51(10), 25-27.
[40] 田晓, 高滢, 旺姆, 蔺瑞明, 徐世昌 (2018). 大麦(青稞)品种苗期抗锈病鉴定与评价. 大麦与谷类科学 35(3), 42-46, 59.
[41] 王海岗, 贾冠清, 智慧, 温琪汾, 董俊丽, 陈凌, 王君杰, 曹晓宁, 刘思辰, 王纶, 乔治军, 刁现民 (2016). 谷子核心种质表型遗传多样性分析及综合评价. 作物学报 42, 19-30.
[42] 王兰芬, 武晶, 景蕊莲, 程须珍, 王述民 (2014). 绿豆种质资源芽期抗旱性鉴定. 植物遗传资源学报 15, 498-503.
[43] 王兰芬, 武晶, 景蕊莲, 程须珍, 王述民 (2015). 绿豆种质资源苗期抗旱性鉴定. 作物学报 41, 145-153.
[44] 王兰芬, 武晶, 彭琳, 季良, 王述民 (2019). 绿豆种质资源抗旱性鉴定评价. 植物遗传资源学报 20, 1141-1150.
[45] 王兰芬, 武晶, 王昭礼, 余莉, 吴宪志, 张时龙, 王述民 (2016). 普通菜豆种质资源表型鉴定及多样性分析. 植物遗传资源学报 17, 976-983.
[46] 王乐政, 高凤菊, 曹鹏鹏, 华方静, 田艺心 (2016). 中绿系列绿豆品种在鲁西北地区的表现及评价. 中国种业 (9), 47-49.
[47] 王连军, 雷剑, 苏文瑾, 柴沙沙, 杨新笋 (2018). 甘薯优良种质徐薯18的育种价值分析. 湖北农业科学 57(4), 11-14.
[48] 王明珍, 朱志华, 张晓芳 (1992). 中国高粱品种资源耐盐性鉴定初报. 作物品种资源 (2), 28-29.
[49] 王强, 孟宪欣, 尹振功, 魏淑红, 郭怡璠, 杨广东 (2022). 普通菜豆新品种龙芸豆17的选育. 中国种业 (5), 93-94.
[50] 王强, 魏淑红, 孟宪欣, 杨广东 (2017). 芸豆新品种龙芸豆14. 中国种业 (10), 84.
[51] 王星玉 (1985). 山西省谷子品种资源的品质研究. 作物品种资源 (3), 22-23.
[52] 王修臣, 田静, 李辉 (1992). 小豆品种资源耐盐性鉴定研究. 作物品种资源 (3), 25-26.
[53] 王仲怡, 包世英, 段灿星, 宗绪晓, 朱振东 (2013). 豌豆抗白粉病资源筛选及分子鉴定. 作物学报 39, 1030-1038.
[54] 卫丽, 王同朝, 张桂兰 (1999). 谷子品种资源营养品质分析及抗病性鉴定. 华北农学报 (2), 107-110.
[55] 魏淑红 (1997). 新品种龙芸豆4号特征特性及丰产栽培技术. 黑龙江农业科学 (5), 35-36.
[56] 魏淑红 (2000). 全国小豆种质资源抗尾孢菌叶斑病鉴定研究. 黑龙江农业科学 (3), 20-21.
[57] 温琪汾, 刘润堂, 王纶, 王星玉, 师颖 (2006). 谷子种质资源抗黑穗病鉴定与过氧化物酶研究. 植物遗传资源学报 7, 349-351.
[58] 温琪汾, 王纶, 王星玉 (2005). 山西省谷子种质资源及抗旱种质的筛选利用. 山西农业科学 (4), 32-33.
[59] 谢承陶 (1993). 盐渍土改良原理与作物抗性. 北京: 中国农业科技出版社. pp. 184-233.
[60] 薛仁风 (2012). 普通菜豆镰孢菌枯萎病抗病种质鉴定及抗病机理研究. 博士论文. 北京: 中国农业科学院. pp. 1-171.
[61] 亚秀秀, 杨东旭, 周桂梅, 陈健, 刘振兴 (2022). 豌豆种质资源耐盐性的鉴定与评价. 四川农业大学学报 40, 505-511.
[62] 杨迪 (2021). 苦荞种质资源抗旱性评价及相关基因的挖掘和功能分析. 硕士论文. 兰州: 兰州大学. pp. 1-92.
[63] 杨慧勇, 柳青山, 张一中, 张福耀, 张晓娟, 李志华, 范昕琦, 聂萌恩, 赵建武 (2020). 高粱种质资源抗蚜性评价. 植物遗传资源学报 21, 1112-1123.
[64] 杨延兵, 管延安, 秦岭, 石慧, 王海莲, 张华文 (2012). 不同地区谷子小米黄色素含量与外观品质研究. 中国粮油学报 27, 14-19.
[65] 喻少帆, 金文林, 张清润, 陈学珍, 郭明华 (1997). 小豆种质资源抗白粉病鉴定. 北京农业科学 (3), 41-42, 45.
[66] 庾正平, 贾丽娟 (1992). 山西省高粱品种蛋白质、赖氨酸和单宁含量研究. 作物品种资源 (4), 26-27.
[67] 张笛, 苗兴芬, 王雨婷 (2019). 100份谷子品种资源萌发期耐盐性评价及耐盐品种筛选. 作物杂志 (6), 43-49.
[68] 张广峰, 陈喜明, 韩云丽, 张忠梁, 李晓峰, 白洁 (2020). 31个荞麦品种的经济性状及品质分析. 种子 39(5), 85-87, 91.
[69] 张红岩, 杨涛, 关建平, 杨生华, 方俐, 杜萌莹, 宗绪晓 (2016). 蚕豆抗绿豆象种质资源的鉴定. 作物杂志 (4), 86-92.
[70] 张丽霞, 王春语, 王平, 丛玲, 于惠琳, 陆晓春 (2018). 种子萌发期高粱抗旱材料的筛选与鉴定. 分子植物育种 16, 5796-5803.
[71] 张雄坚, 房伯平, 陈景益, 罗忠霞, 黄立飞 (2008). 甘薯资源耐寒性调查. 广东农业科学 (S1), 67-68.
[72] 张毅, 杨轲, 汪军成, 姚立蓉, 司二静, 马小乐, 李葆春, 尚勋武, 王化俊, 孟亚雄 (2022). 100份大麦种质资源成株期抗旱性鉴定及抗旱指标筛选. 麦类作物学报 42, 441-450.
[73] 张英虎, 沈会权, 乔海龙, 陈健, 臧慧, 栾海业, 陶红, 徐肖, 杨红燕, 陈和 (2018). 大麦种质资源农艺性状鉴定及其利用. 大麦与谷类科学 35(4), 58-59.
[74] 张耘, 刘占和, 王斌 (2007). 榆林小杂粮. 北京: 中国农业科学技术出版社. pp. 2, 10, 42, 60, 113.
[75] 张允刚, 郭小丁 (2003). 甘薯薯干高淀粉资源的鉴定及综合评价. 植物遗传资源学报 4, 55-57.
[76] 赵冬兰, 张允刚, 唐军, 郭小丁 (2005). 抗甘薯黑斑病优异种质资源的筛选与评价. 植物遗传资源学报 6, 80-83.
[77] 仲伟文, 杨涛, 段灿星, 姜俊烨, 王芳, 杨晓明, 宗绪晓 (2014). 豌豆种质资源抗绿豆象鉴定. 作物杂志 (5), 43-47.
[78] 周瑜, 李泽碧, 黄娟, 吴毓, 张亚勤, 张志良, 张晓春 (2021). 高粱种质资源表型性状的遗传多样性分析. 植物遗传资源学报 22, 654-664.
[79] 朱吉风, 武晶, 王兰芬, 朱振东, 王述民 (2015). 菜豆种质资源抗普通细菌性疫病鉴定. 植物遗传资源学报 16, 467-471.
[80] 朱振东, 王晓鸣 (2003). 小豆疫霉茎腐病病原菌鉴定及抗病资源筛选. 植物保护学报 30, 289-294.
[81] 朱志华, 李为喜, 刘方, 张晓芳, 王文真, 刘三才, 李燕 (2003). 高粱种质资源主要品质性状鉴定与评价. 植物遗传资源学报 4, 326-330.
[82] Bayer PE, Golicz AA, Scheben A, Batley J, Edwards D (2020). Plant pan-genomes are the new reference. Nat Plants 6, 914-920.
[83] Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang XW, Wu XM, Mitros T, Triplett J, Yang XH, Ye CY, Mauro-Herrera M, Wang L, Li PH, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012). Reference genome sequence of the model plant Setaria. Nat Biotechnol 30, 555-561.
[84] Chen ML, Wu J, Wang LF, Mantri N, Zhang XY, Zhu ZD, Wang SM (2017). Mapping and genetic structure analysis of the anthracnose resistance locus co-1hy in the common bean (Phaseolus vulgaris L.). PLoS One 12, e0169954.
[85] Cheng ZX, Sun Y, Yang SH, Zhi H, Yin T, Ma XJ, Zhang HS, Diao XM, Guo Y, Li XH, Wu CY, Sui Y (2021). Establishing in planta haploid inducer line by edited SiMTL in foxtail millet (Setaria italica). Plant Biotechnol J 19, 1089-1091.
[86] Chou J, Huang J, Huang YH (2020). Simple and efficient genetic transformation of sorghum using immature inflorescences. Acta Physiol Plant 42(3), 41.
[87] Ding MQ, Zhang KX, He YQ, Zuo Q, Zhao H, He M, Georgiev MI, Park SU, Zhou ML (2021). FtBPM3 modulates the orchestration of FtMYB11-mediated flavonoids biosynthesis in Tartary buckwheat. Plant Biotechnol J 19, 1285-1287.
[88] Feng X, Liu WX, Qiu CW, Zeng FR, Wang YZ, Zhang GP, Chen ZH, Wu FB (2020). HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H+ homoeostasis. Plant Biotechnol J 18, 1683-1696.
[89] Guan JT, Zhang JT, Gong D, Zhang ZQ, Yu Y, Luo GL, Somta P, Hu Z, Wang SH, Yuan XX, Zhang YW, Wang YL, Chen YH, Laosatit K, Chen X, Chen HL, Sha AH, Cheng XZ, Xie H, Wang LX (2022). Genomic analyses of rice bean landraces reveal adaptation and yield related loci to accelerate breeding. Nat Commun 13, 5707.
[90] He M, He YQ, Zhang KX, Lu X, Zhang XM, Gao B, Fan Y, Zhao H, Jha R, Huda MN, Tang Y, Wang JZ, Yang WF, Yan ML, Cheng JP, Ruan JJ, Dulloo E, Zhang ZW, Georgiev MI, Chapman MA, Zhou ML (2022). Comparison of buckwheat genomes reveals the genetic basis of metabolomic divergence and ecotype differentiation. New Phytol 235, 1927-1943.
[91] Hou SY, Zhang YJ, Zhao B, Man XX, Ma GF, Men YH, Du W, Yang Y, Li HY, Han YH, Zhao YF, Sun ZX (2022). Heterologous expression of SiFBP, a folate-binding protein from foxtail millet, confers increased folate content and altered amino acid profiles with nutritional potential to Arabidopsis. J Agric Food Chem 70, 6272-6284.
[92] Hu LL, Luo GL, Zhu X, Wang SH, Wang LX, Cheng XZ, Chen HL (2022). Genetic diversity and environmental influence on yield and yield-related traits of adzuki bean (Vigna angularis L.). Plants 11, 1132.
[93] Huang YJ, Zhao HX, Gao F, Yao PF, Deng RY, Li CL, Chen H, Wu Q (2018). A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/ drought tolerance in Arabidopsis. Plant Physiol Biochem 132, 238-248.
[94] Jia GQ, Huang XH, Zhi H, Zhao Y, Zhao Q, Li WJ, Chai Y, Yang LF, Liu KY, Lu HY, Zhu CR, Lu YQ, Zhou CC, Fan DL, Weng QJ, Guo YL, Huang T, Zhang L, Lu TT, Feng Q, Hao HF, Liu HK, Lu P, Zhang N, Li YH, Guo EH, Wang SJ, Wang SY, Liu JR, Zhang WF, Chen GQ, Zhang BJ, Li W, Wang YF, Li HQ, Zhao BH, Li JY, Diao XM, Han B (2013). A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat Genet 45, 957-961.
[95] Jiang CC, Lei MM, Guo Y, Gao GQ, Shi LJ, Jin YL, Cai Y, Himmelbach A, Zhou SH, He Q, Yao XF, Kan JH, Haberer G, Duan FY, Li LH, Liu J, Zhang J, Spannagl M, Liu CM, Stein N, Feng ZY, Mascher M, Yang P (2022). A reference-guided TILLING by amplicon-sequencing platform supports forward and reverse genetics in barley. Plant Commun 3, 100317.
[96] Karthik S, Pavan G, Manickavasagam M (2020). Nitric oxide donor regulates Agrobacterium-mediated genetic transformation efficiency in soybean [Glycine max (L.) Merrill]. Plant Cell Tiss Org 141, 655-660.
[97] Li C, Yue J, Wu XW, Xu C, Yu JJ (2014). An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot 65, 5415-5427.
[98] Li G, Liu R, Xu RF, Varshney RK, Ding HF, Li MW, Yan X, Huang SX, Li J, Wang D, Ji YS, Wang CY, He JG, Luo YF, Gao SH, Wei PC, Zong XX, Yang T (2022a). Development of an Agrobacterium-mediated CRISPR/Cas9 system in pea (Pisum sativum L.). Crop J https://doi.org/10.1016/j.cj.2022.04.011
[99] Li JR, Dong Y, Li C, Pan YL, Yu JJ (2017). SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants. Front Plant Sci 7, 2053.
[100] Li Q, Wu Q, Wang AH, Lv BB, Dong QX, Yao YJ, Wu Q, Zhao HX, Li CL, Chen H, Wang XL (2019). Tartary buckwheat transcription factor FtbZIP83 improves the drought/salt tolerance of Arabidopsis via an ABA-mediated pathway. Plant Physiol Biochem 144, 312-323.
[101] Li XK, Gao JH, Song JY, Guo K, Hou SY, Wang XC, He Q, Zhang YY, Zhang YK, Yang YL, Tang JY, Wang HL, Persson S, Huang MQ, Xu LS, Zhong LL, Li DQ, Liu YM, Wu H, Diao XM, Chen P, Wang XW, Han YH (2022b). Multi-omics analyses of 398 foxtail millet accessions reveal genomic regions associated with domestication, metabolite traits, and anti-inflammatory effects. Mol Plant 15, 1367-1383.
[102] Li ZJ, Jia GQ, Li XY, Li YC, Zhi H, Tang S, Ma JF, Zhang S, Li YD, Shang ZL, Diao XM (2021). Identification of blast-resistance loci through genome-wide association analysis in foxtail millet (Setaria italica (L.) Beauv.). J Integr Agri 20, 2056-2064.
[103] Liu CY, Wang Y, Peng JX, Fan BJ, Xu DX, Wu J, Cao ZM, Gao YQ, Wang XQ, Li ST, Su QZ, Zhang ZX, Wang S, Wu XB, Shang QB, Shi HY, Shen YC, Wang BB, Tian J (2022). High-quality genome assembly and pan-genome studies facilitate genetic discovery in mungbean and its improvement. Plant Commun 3, 100352.
[104] Molina-Risco M, Ibarra O, Faion-Molina M, Kim B, Septiningsih EM, Thomson MJ (2021). Optimizing Agrobacterium-mediated transformation and CRISPR-Cas9 gene editing in the tropical japonica rice variety presidio. Int J Mol Sci 22, 10909.
[105] Pardo J, VanBuren R (2021). Evolutionary innovations driving abiotic stress tolerance in C4 grasses and cereals. Plant Cell 33, 3391-3401.
[106] Peng YL, Zhang JP, Cao GY, Xie YH, Liu XH, Lu MH, Wang GY (2010). Overexpression of a PLDα1 gene from Setaria italica enhances the sensitivity of Arabidopsis to abscisic acid and improves its drought tolerance. Plant Cell Rep 29, 793-802.
[107] Peng YY, Yan HH, Guo LC, Deng C, Wang CL, Wang YB, Kang LP, Zhou PP, Yu KQ, Dong XL, Liu XM, Sun ZY, Peng Y, Zhao J, Deng D, Xu YH, Li Y, Jiang QT, Li Y, Wei LM, Wang JR, Ma J, Hao M, Li W, Kang HY, Peng ZS, Liu DC, Jia JZ, Zheng YL, Ma T, Wei YM, Lu F, Ren CZ (2022). Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat Genet 54, 1248-1258.
[108] Shi JP, Ma XX, Zhang JH, Zhou YS, Liu MX, Huang LL, Sun SL, Zhang XB, Gao X, Zhan W, Li PH, Wang L, Lu P, Zhao HM, Song WB, Lai JS (2019). Chromosome conformation capture resolved near complete genome assembly of broomcorn millet. Nat Commun 10, 464.
[109] Sun ZX, Linghu B, Hou SY, Liu RH, Wang L, Hao YR, Han YH, Zhou ML, Liu LL, Li HY (2020). Tartary buckwheat FtMYB31 gene encoding an R2R3-MYB transcription factor enhances flavonoid accumulation in tobacco. J Plant Growth Regul 39, 564-574.
[110] Tang S, Shahriari M, Xiang JS, Pasternak T, Igolkina A, Aminizade S, Zhi H, Gao YZ, Roodbarkelari F, Sui Y, Jia GQ, Wu CY, Zhang LL, Zhao LR, Li XG, Meshcheryakov G, Samsonova M, Diao XM, Palme K, Teale W (2022). The role of AUX1 during lateral root development in the domestication of the model C4 grass Setaria italica. J Exp Bot 73, 2021-2034.
[111] Tao YF, Luo H, Xu JB, Cruickshank A, Zhao XR, Teng F, Hathorn A, Wu XY, Liu YM, Shatte T, Jordan D, Jing HC, Mace E (2021). Extensive variation within the pan- genome of cultivated and wild sorghum. Nat Plants 7, 766-773.
[112] Wang HL, Tang S, Zhi H, Xing LH, Zhang HS, Tang CJ, Wang EB, Zhao MC, Jia GQ, Feng BL, Diao XM (2022a). The boron transporter SiBOR1 functions in cell wall integrity, cellular homeostasis, and panicle development in foxtail millet. Crop J 10, 342-353.
[113] Wang HX, Wang CY, Fan WJ, Yang J, Appelhagen I, Wu YL, Zhang P (2018). A novel glycosyltransferase catalyses the transfer of glucose to glucosylated anthocyanins in purple sweet potato. J Exp Bot 69, 5444-5459.
[114] Wang HX, Wu YL, Zhang YD, Yang J, Fan WJ, Zhang H, Zhao SS, Yuan L, Zhang P (2019). CRISPR/Cas9-based mutagenesis of starch biosynthetic genes in sweet potato (Ipomoea batatas) for the improvement of starch quality. Int J Mol Sci 20, 4702.
[115] Wang JH, Xu ZM, Qiu XB, Li LL, Yu SY, Li T, Tang YY, Pu X, Zhang JY, Zhang HL, Liang JJ, Tang YW, Li W, Long H, Deng GB (2021). Genetic and molecular characterization of determinant of six-rowed spike of barley carrying vrs1.a4. Theor Appl Genet 134, 3225-3236.
[116] Wang K, Shi L, Liang XN, Zhao P, Wang WX, Liu JX, Chang YN, Hiei Y, Yanagihara C, Du LP, Ishida Y, Ye XG (2022b). The gene TaWOX5 overcomes genotype dependency in wheat genetic transformation. Nat Plants 8, 110-117.
[117] Wang ZP, Zhang ZB, Zheng DY, Zhang TT, Li XL, Zhang C, Yu R, Wei JH, Wu ZY (2022c). Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles. J Integr Plant Biol 64, 1145-1156.
[118] Wu J, Wang LF, Fu JJ, Chen JB, Wei SH, Zhang SL, Zhang J, Tang YS, Chen ML, Zhu JF, Lei L, Geng QH, Liu CL, Wu L, Li XM, Wang XL, Wang Q, Wang ZL, Xing SL, Zhang HK, Blair MW, Wang SM (2020). Resequencing of 683 common bean genotypes identifies yield component trait associations across a north-south cline. Nat Genet 52, 118-125.
[119] Wu L, Chang YJ, Wang LF, Wang SM, Wu J (2022a). The aquaporin gene PvXIP1;2 conferring drought resistance identified by GWAS at seedling stage in common bean. Theor Appl Genet 135, 485-500.
[120] Wu XY, Liu YM, Luo H, Shang L, Leng CY, Liu ZQ, Li ZG, Lu XC, Cai HW, Hao HQ, Jing HC (2022b). Genomic footprints of sorghum domestication and breeding selection for multiple end uses. Mol Plant 15, 537-551.
[121] Xiang JS, Tang S, Zhi H, Jia GQ, Wang HJ, Diao XM (2017). Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L.) P. Beauv.]. PLoS One 12, e0178730.
[122] Xie P, Shi JY, Tang SY, Chen CX, Khan A, Zhang FX, Xiong Y, Li C, He W, Wang GD, Lei FM, Wu YR, Xie Q (2019). Control of bird feeding behavior by tannin1 through modulating the biosynthesis of polyphenols and fatty acid-derived volatiles in sorghum. Mol Plant 12, 1315-1324.
[123] Xie P, Tang SY, Chen CX, Zhang HL, Yu FF, Li C, Wei HM, Sui Y, Wu CY, Diao XM, Wu YR, Xie Q (2022). Natural variation in Glume Coverage 1 causes naked grains in sorghum. Nat Commun 13, 1068.
[124] Xu WY, Tang WS, Wang CX, Ge LH, Sun JC, Qi X, He Z, Zhou YB, Chen J, Xu ZS, Ma YZ, Chen M (2020). SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Front Plant Sci 11, 785.
[125] Yang J, Bi HP, Fan WJ, Zhang M, Wang HX, Zhang P (2011). Efficient embryogenic suspension culturing and rapid transformation of a range of elite genotypes of sweet potato (Ipomoea batatas [L.] Lam.). Plant Sci 181, 701-711.
[126] Yang J, Moeinzadeh MH, Kuhl H, Helmuth J, Xiao P, Haas S, Liu GL, Zheng JL, Sun Z, Fan WJ, Deng GF, Wang HX, Hu FH, Zhao SS, Fernie AR, Boerno S, Timmermann B, Zhang P, Vingron M (2017). Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants 3, 696-703.
[127] Yang K, Tian ZX, Chen CH, Luo LH, Zhao B, Wang Z, Yu LL, Li YS, Sun YD, Li WY, Chen Y, Li YQ, Zhang YY, Ai DJ, Zhao JY, Shang C, Ma Y, Wu B, Wang ML, Gao L, Sun DJ, Zhang P, Guo FF, Wang WW, Li Y, Wang JL, Varshney RK, Wang J, Ling HQ, Wan P (2015). Genome sequencing of adzuki bean (Vigna angularis) provides insight into high starch and low fat accumulation and domestication. Proc Natl Acad Sci USA 112, 13213-13218.
[128] Yang Q, Ding JJ, Feng XQ, Zhong XJ, Lan JY, Tang HP, Harwood W, Li ZY, Guzmán C, Xu Q, Zhang YZ, Jiang YF, Qi PF, Deng M, Ma J, Wang JR, Chen GY, Lan XJ, Wei YM, Zheng YL, Jiang QT (2022a). Editing of the starch synthase IIa gene led to transcriptomic and metabolomic changes and high amylose starch in barley. Carbohydr Polym 285, 119238.
[129] Yang T, Liu R, Luo YF, Hu SN, Wang D, Wang CY, Pandey MK, Ge S, Xu QL, Li NN, Li G, Huang YN, Saxena RK, Ji YS, Li MW, Yan X, He YH, Liu YJ, Wang XJ, Xiang C, Varshney RK, Ding HF, Gao SH, Zong XX (2022b). Improved pea reference genome and pan-genome highlight genomic features and evolutionary characteristics. Nat Genet 54, 1553-1563.
[130] Yang ZR, Zhang HS, Li XK, Shen HM, Gao JH, Hou SY, Zhang B, Mayes S, Bennett M, Ma JX, Wu CY, Sui Y, Han YH, Wang XC (2020). A mini foxtail millet with an Arabidopsis-like life cycle as a C4model system. Nat Plants 6, 1167-1178.
[131] Yao PF, Li CL, Zhao XR, Li MF, Zhao HX, Guo JY, Cai Y, Chen H, Wu Q (2017). Overexpression of a Tartary buckwheat gene, FtbHLH3, enhances drought/oxidative stress tolerance in transgenic Arabidopsis. Front Plant Sci 8, 625.
[132] Yu B, Zhai H, Wang YP, Zang N, He SZ, Liu QC (2007). Efficient Agrobacterium tumefaciens-mediated transformation using embryogenic suspension cultures in sweetpotato, Ipomoea batatas (L.) Lam. Plant Cell Tiss Org 90, 265-273.
[133] Zeng XQ, Long H, Wang Z, Zhao SC, Tang YW, Huang ZY, Wang YL, Xu QJ, Mao LK, Deng GB, Yao XM, Li XF, Bai LJ, Yuan HJ, Pan ZF, Liu RJ, Chen X, Wangmu Q, Chen M, Yu LL, Liang JJ, Dunzhu D, Zheng Y, Yu SY, Luobu Z, Guang XM, Li J, Deng C, Hu WS, Chen CH, Taba X, Gao LY, Lv XD, Abu YB, Fang XD, Nevo E, Yu MQ, Wang J, Tashi N (2015). The draft genome of Tibetan hulless barley reveals adaptive patterns to the high stressful Tibetan Plateau. Proc Natl Acad Sci USA 112, 1095-1100.
[134] Zhai H, Wang FB, Si ZZ, Huo JX, Xing L, An YY, He SZ, Liu QC (2016). A myo-inositol-1-phosphate synthase gene, IbMIPS1, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. Plant Biotechnol J 14, 592-602.
[135] Zhang D, Tang SY, Xie P, Yang DK, Wu YR, Cheng SJ, Du K, Xin PY, Chu JF, Yu FF, Xie Q (2022). Creation of fragrant sorghum by CRISPR/Cas9. J Integr Plant Biol 64, 961-964.
[136] Zhang GY, Liu X, Quan ZW, Cheng SF, Xu X, Pan SK, Xie M, Zeng P, Yue Z, Wang WL, Tao Y, Bian C, Han CL, Xia QJ, Peng XH, Cao R, Yang XH, Zhan DL, Hu JC, Zhang YX, Li HN, Li H, Li N, Wang JY, Wang CC, Wang RY, Guo T, Cai YJ, Liu CZ, Xiang HT, Shi QX, Huang P, Chen QC, Li YR, Wang J, Zhao ZH, Wang J (2012). Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30, 549-554.
[137] Zhang H, Zhang Q, Zhai H, Gao SP, Yang L, Wang Z, Xu YT, Huo JX, Ren ZT, Zhao N, Wang XF, Li JG, Liu QC, He SZ (2020). IbBBX24 promotes the jasmonic acid pathway and enhances fusarium wilt resistance in sweet potato. Plant Cell 32, 1102-1123.
[138] Zhang KX, He M, Fan Y, Zhao H, Gao B, Yang KL, Li FL, Tang Y, Gao Q, Lin T, Quinet M, Janovská D, Megli? V, Kwiatkowski J, Romanova O, Chrungoo N, Suzuki T, Luthar Z, Germ M, Woo SH, Georgiev MI, Zhou ML (2021). Resequencing of global Tartary buckwheat accessions reveals multiple domestication events and key loci associated with agronomic traits. Genome Biol 22, 23.
[139] Zhang LJ, Li XX, Ma B, Gao Q, Du HL, Han YH, Li Y, Cao YH, Qi M, Zhu YX, Lu HW, Ma MC, Liu LL, Zhou JP, Nan CH, Qin YJ, Wang J, Cui L, Liu HM, Liang CZ, Qiao ZJ (2017). The Tartary buckwheat genome provides insights into rutin biosynthesis and abiotic stress tole-rance. Mol Plant 10, 1224-1237.
[140] Zhao MC, Tang S, Zhang HS, He MM, Liu JH, Zhi H, Sui Y, Liu XT, Jia GQ, Zhao ZY, Yan JJ, Zhang BC, Zhou YH, Chu JF, Wang XC, Zhao BH, Tang WQ, Li JY, Wu CY, Liu XG, Diao XM (2020). DROOPY LEAF 1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proc Natl Acad Sci USA 117, 21766-21774.
[141] Zhao MC, Zhi H, Zhang X, Jia GQ, Diao XM (2019). Retrotransposon-mediated DELLA transcriptional reprograming underlies semi-dominant dwarfism in foxtail millet. Crop J 7, 458-468.
[142] Zhao ZY, Cai T, Tagliani L, Miller M, Wang N, Pang H, Rudert M, Schroeder S, Hondred D, Seltzer J, Pierce D (2000). Agrobacterium-mediated sorghum transformation. Plant Mol Biol 44, 789-798.
[143] Zhou LN, Zhu C, Fang XJ, Liu HQ, Zhong SY, Li Y, Liu JC, Song Y, Jian X, Lin ZW (2021). Gene duplication drove the loss of awn in sorghum. Mol Plant 14, 1831-1845.
[144] Zou CS, Li LT, Miki D, Li DL, Tang QM, Xiao LH, Rajput S, Deng P, Peng L, Jia W, Huang R, Zhang ML, Sun YD, Hu JM, Fu X, Schnable PS, Chang YX, Li F, Zhang H, Feng BL, Zhu XG, Liu RY, Schnable JC, Zhu JK, Zhang H (2019). The genome of broomcorn millet. Nat Commun 10, 436.
Outlines

/