Effects of PAC on Soil Nitrogen Supply and Leaf Antioxidant Properties in Foxtail Millet at Anthesis Stage
Received date: 2022-05-12
Accepted date: 2022-09-26
Online published: 2022-11-07
The way of one-time basic fertilizer application causes imbalance of nutrients supplies in the whole growth period of crops, which results in the deficiency of nutrients and premature senility in the late growth period. In order to investigate the mechanism of polyaspartic acid-chitosan (PAC) in soil nitrogen supply and regulation of antioxidant properties in foxtail millet leaf after flowering in the northeast China and establish an anti-aging and high-yielding technology under the background of one-time basic fertilizer application, a field experiment was conducted using foxtail millet (Setaria italica) varieties of Zhangzagu 13 and Huayougu 9 in Gongzhuling Experimental Station of Institute of Crop Sciences (Chinese Academy of Agricultural Sciences) from 2020 to 2021. Conventional fertilization (CN) and PAC with fertilization (PN) treatments were set under six nitrogen levels of 0, 75, 112.5, 150, 225, and 337.5 kg·hm-2 with all fertilizer applicated before sowing. Our results showed that, compared with CN under the same nitrogen application level, PAC increased NO3--N and NH4+-N content in the 0-20 cm and 20-40 cm soil layers of two foxtail millet varieties at anthesis and mid-filling stage. Meanwhile, PAC increased leaf area and decreased leaf area reduction per plant significantly. The activities of superoxide dismutase, peroxidase and catalase of the flag leaf increased but the content of malondialdehyde reduced in 0-40 days after flowering. Thus, PAC ensures the supply of nitrogen in soil during the middle-late growth period, increases the antioxidant properties of leaf to delay the progress of leaf senescence and increase yield of foxtail millet effectively. In 2020 and 2021, the yield of Zhangzagu 13 increased by 11.24%-21.55% and 8.65%-14.22%, respectively, and the yield of Huayougu 9 increased by 5.53%-15.75% and 10.43%-16.17%, respectively, compared with CN under the same nitrogen application level. The effect of the items above was more significant at low-middle nitrogen application levels of 75, 112.5 and 150 kg·hm-2. Therefore, PAC combined with nitrogen fertilizer could be an anti-aging and high-yielding cultivation technique in foxtail millet production in the northeast China spring-sowing region.
Qi Wang, Yanli Xu, Peng Yan, Haosheng Dong, Wei Zhang, Lin Lu, Zhiqiang Dong . Effects of PAC on Soil Nitrogen Supply and Leaf Antioxidant Properties in Foxtail Millet at Anthesis Stage[J]. Chinese Bulletin of Botany, 2023 , 58(1) : 90 -107 . DOI: 10.11983/CBB22104
[1] | 常闻谦, 刘鹏, 赵世伟 (2018). 水氮耦合对谷子拔节后生长、产量和水氮利用效率的影响. 西北农业学报 27, 1313-1321. | |
[2] | 陈佳阳, 乐学义 (2011). 壳聚糖及其衍生物在农业上的应用. 化学研究与应用 23, 1-8. | |
[3] | 陈军, 高贵珍, 赵亮, 徐礼生, 张兴桃, 薛文 (2015). 干旱胁迫下壳聚糖浸种对小麦萌发期保护酶活性的影响. 基因组学与应用生物学 34, 2251-2254. | |
[4] | 段咏新, 宋松泉, 傅家瑞 (1997). 钙对延缓杂交水稻叶片衰老的作用机理. 杂交水稻 12(6), 23-25. | |
[5] | 高月亮 (2007). 聚天冬氨酸对尿素氮在土壤中运移影响的研究. 硕士论文. 北京: 首都师范大学. pp. 1-82. | |
[6] | 何萍, 金继运 (1999). 氮钾营养对春玉米叶片衰老过程中激素变化与活性氧代谢的影响. 植物营养与肥料学报 5, 289-296. | |
[7] | 侯彩霞, 汤章城 (1999). 细胞相容性物质的生理功能及其作用机制. 植物生理学通讯 35, 1-7. | |
[8] | 李红梅 (2018). 减量分期施氮对小麦产量和氮素利用效率的影响. 硕士论文. 泰安: 山东农业大学. pp. 1-166. | |
[9] | 李顺国, 刘斐, 刘猛, 程汝宏, 夏恩君, 刁现民 (2021). 中国谷子产业和种业发展现状与未来展望. 中国农业科学 54, 459-470. | |
[10] | 李宗新, 王庆成, 齐世军, 刘开昌, 刘霞, 张彗 (2007). 控释肥对玉米高产的应用效应研究进展. 华北农学报 22(S1), 127-130. | |
[11] | 林春梅 (2012). 壳聚糖在农业领域中的应用. 现代农业科技 (12), 331-332. | |
[12] | 刘光明, 赵灿, 蒋岩, 赵凌天, 廖平强, 王维领, 霍中洋 (2022). 施氮量对水稻源库协同衰老特征的影响. 植物生理学报 58, 173-185. | |
[13] | 刘红卫 (2010). 聚天门冬氨酸和多肽肥料应用展望. 黑龙江农业科学 (7), 162-164. | |
[14] | 刘连涛, 李存东, 孙红春, 张永江, 白志英, 冯丽肖 (2009). 氮素营养水平对棉花衰老的影响及其生理机制. 中国农业科学 42, 1575-1581. | |
[15] | [15] | 刘球, 李志辉, 吴际友, 陈彩霞, 李艳, 吴志华, 程勇, 黄明军 (2015). 红椿幼苗对干旱胁迫及复水生理响应的典型相关分析. 西北农林科技大学学报(自然科学版) 43(10), 35-44. |
[16] | 陆雯芸 (2016). 水稻OsVPE3转基因株系表型及其盐胁迫诱导的程序性细胞死亡研究. 硕士论文. 杭州: 浙江大学. pp. 1-70. | |
[17] | 马承, 罗庆熙 (2008). 壳聚糖在农业领域中的应用. 北方园艺 (9), 55-56. | |
[18] | 曲丹阳 (2018). 壳聚糖缓解玉米幼苗镉毒害的生理机制. 硕士论文. 哈尔滨: 东北农业大学. pp. 1-62. | |
[19] | 孙海燕, 罗兵, 徐朗莱 (2006). 壳聚糖浸种对黄瓜幼苗生长和果实品质的影响. 安徽农业科学 34, 3329-3330. | |
[20] | 唐会会 (2019). 聚天门冬氨酸(PASP)对东北春玉米氮素代谢的调控效应及其节氮机理. 硕士论文. 北京: 中国农业科学院. pp. 1-57. | |
[21] | 唐会会, 许艳丽, 王庆燕, 马正波, 李光彦, 董会, 董志强 (2019). 聚天门冬氨酸螯合氮肥减量基施对东北春玉米的增效机制. 作物学报 45, 431-442. | |
[22] | 王琦, 许艳丽, 闫鹏, 董好胜, 张薇, 卢霖, 董志强 (2022). 聚天门冬氨酸和壳聚糖复配剂对谷子光合特性、氮素利用率及产量的影响. 生态学杂志. https://kns.cnki.net/kcms/detail/21.1148.Q.20220531.1713.013.html. 2022-06-01. | |
[23] | 王三根 (2000). 细胞分裂素在植物抗逆和延衰中的作用. 植物学通报 17, 121-126. | |
[24] | 王涛, 黄语燕, 陈永快, 廖水兰, 刘现, 康育鑫 (2019). 高温胁迫下外源壳聚糖对黄瓜幼苗生长的影响. 江苏农业科学 47(23), 142-146. | |
[25] | 王燚 (2019). 5-氨基乙酰丙酸(ALA)缓解玉米早春低温胁迫生理机制. 博士论文. 哈尔滨: 东北农业大学. pp. 1-110. | |
[26] | 王永军, 杨今胜, 袁翠平, 柳京国, 李登海, 董树亭 (2013). 超高产夏玉米花粒期不同部位叶片衰老与抗氧化酶特性. 作物学报 39, 2183-2191. | |
[27] | 解振兴, 董志强, 兰宏亮, 高娇, 朱平, 彭畅 (2012). 磷酸胆碱合剂对不同种植密度玉米叶片衰老生理的影响. 核农学报 26, 157-163. | |
[28] | 徐娜, 徐江民, 蒋玲欢, 饶玉春 (2017). 水稻叶片早衰成因及分子机理研究进展. 植物学报 52, 102-112. | |
[29] | 薛盈文, 苗兴芬, 王玉凤 (2019). 施氮对谷子光合特性及产量和品质的影响. 黑龙江八一农垦大学学报 31(4), 1-7, 39. | |
[30] | 杨俊刚, 高强, 曹兵, 陈新平 (2009). 一次性施肥对春玉米产量和环境效应的影响. 中国农学通报 25(19), 123-128. | |
[31] | 杨淑慎, 高俊凤, 李学俊 (2001). 高等植物叶片的衰老. 西北植物学报 21, 1271-1277. | |
[32] | 曾蓉 (2013). 氮肥运筹对谷子产量及品质的影响. 硕士论文. 晋中: 山西农业大学. pp. 1-46. | |
[33] | 张林, 武文明, 陈欢, 陈洪俭, 彭晨, 王世济, 曹承富 (2021). 氮肥运筹方式对土壤无机氮变化、玉米产量和氮素吸收利用的影响. 中国土壤与肥料 (4), 126-134. | |
[34] | 张盛春, 李清明, 阳成伟 (2017). 拟南芥金属蛋白酶FtSH4通过生长素与活性氧调控叶片衰老. 植物学报 52, 453-464. | |
[35] | 张文清, 吕伟娇, 陈强, 李辉信 (2006). 不同分子量壳聚糖对土壤碳、氮及呼吸的影响. 生态学报 26, 1280-1284. | |
[36] | 张亚琦, 李淑文, 付巍, 文宏达 (2014). 施氮对杂交谷子产量与光合特性及水分利用效率的影响. 植物营养与肥料学报 20, 1119-1126. | |
[37] | 张忠学, 尚文彬, 齐智娟, 郑恩楠, 刘明 (2019). 不同水氮管理下玉米叶片衰老对氮转移效率的影响. 农业机械学报 50 (12), 297-303, 267. | |
[38] | 朱云林, 顾大路, 王伟中, 杜小凤, 杨文飞, 孙爱侠 (2017). 壳聚糖对水稻幼苗抗冷性的影响. 江苏农业科学 45(8), 66-68. | |
[39] | Attia MS, Osman MS, Mohamed AS, Mahgoub HA, Garada MO, Abdelmouty ES, Latef AAHA (2021). Impact of foliar application of chitosan dissolved in different organic acids on isozymes, protein patterns and physio-bio-chemical characteristics of tomato grown under salinity stress. Plants 10, 388. | |
[40] | Deng F, Wang L, Ren WJ, Mei XF (2014). Enhancing ni-trogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspar-tic acid urea. Field Crops Res 169, 30-38. | |
[41] | Hidangmayum A, Dwivedi P, Katiyar D, Hemantaranjan A (2019). Application of chitosan on plant responses with special reference to abiotic stress. Physiol Mol Biol Plants 25, 313-326. | |
[42] | Ho SL, Tong WF, Yu SM (2000). Multiple mode regulation of a cysteine proteinase gene expression in rice. Plant Physiol 122, 57-66. | |
[43] | Lü SY, Feng C, Gao CM, Wang XG, Xu XB, Bai X, Gao NN, Liu MZ (2016). Multifunctional environmental smart fertilizer based on L-aspartic acid for sustained nutrient re-lease. J Agric Food Chem 64, 4965-4974. | |
[44] | Ma LJ, Li YY, Yu CM, Wang Y, Li XM, Li N, Chen Q, Bu N (2012). Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma 249, 393-399. | |
[45] | Nkrumah M, Griffith SM, Ahmad N (1989). Lysimeter and field studies on 15N in a tropical soil. II. Transformation of (NH2)2CO-15N in a tropical loam in lysimeter and field plots. Plant Soil 114, 13-18. | |
[46] | Shen JB, Cui ZL, Miao YX, Mi GH, Zhang HY, Fan MS, Zhang CC, Jiang RF, Zhang WF, Li HG, Chen XP, Li XL, Zhang FS (2013). Transforming agriculture in China: from solely high yield to both high yield and high resource use efficiency. Glob Food Secur 2, 1-8. | |
[47] | Tollenaar M, Daynard TB (1978). Leaf senescence in short- season maize hybrids. Can J Plant Sci 58, 869-874. | |
[48] | Van Der Graaff E, Schwacke R, Schneider A, Desimone M, Flu?gge UI, Kunze R (2006). Transcription analysis of Arabidopsis membrane transporters and hormone path-ways during developmental and induced leaf senescence. Plant Physiol 141, 776-792. | |
[49] | Yang F, Hu JJ, Li JL, Wu XL, Qian YR (2009). Chitosan enhances leaf membrane stability and antioxidant enzyme activities in apple seedlings under drought stress. Plant Growth Regul 58, 131-136. |
/
〈 | 〉 |