EXPERIMENTAL COMMUNICATIONS

Characteristics and Expression Specificity of RCA Genes in Two Ecotypes of Phragmites australis

Expand
  • Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University, Beijing 100048, China

Received date: 2022-08-31

  Accepted date: 2022-10-24

  Online published: 2022-10-25

Abstract

(reed) is a cosmopolitan species, with huge biomass and high environmental adaptability. Restricted by its polyploidy genome, it is very difficult to study its unique properties at the genetic level. Using third-generation sequencing and multiple methods, we comprehensively studied the type, structure, expression, and localization patterns of RCA genes (encoding Rubisco activating enzyme) in two reed ecotypes (2n=8x). There are four types of RCA genes in Phragmites genome, all belonging to the RCA2β category. At the transcriptional and protein levels, we adopted immunogold method to detect the localization of RCA proteins. We found that RCAs have obvious ecotype specificity. Compared with swamp reeds (SR), desert-dune reeds (DR) have low RCA expression and RCA2-β2 are preferentially expressed. Six highly expressed RCA isoforms were identified though two-dimensional electrophoresis (2-DE) and mass spectrometry (MS), and were distributed in a high proportion in membrane fraction in DR. This result supports the hypothesis that RCA may transfer to the membrane area as the environment deteriorates, thereby giving RCA a protective function on the chloroplast membrane.

Cite this article

Qiu Tianhang, Wang An’an, Li Li, Wang Yingchun, Cui Jipeng, Wang Ziyao, Wang Rui, Cui Suxia . Characteristics and Expression Specificity of RCA Genes in Two Ecotypes of Phragmites australis[J]. Chinese Bulletin of Botany, 2023 , 58(5) : 687 -700 . DOI: 10.11983/CBB22204

References

[1] 张承烈, 陈国仓 (1991). 河西走廊不同生态类型芦苇的气体交换特点的研究. 生态学报 11, 250-255.
[2] 张茜, 裘天航, 王安安, 周华健, 袁敏, 李利, 白素兰, 崔素霞 (2020). 北京地区芦苇资源状态及其多样性. 植物学报 55, 693-704.
[3] Bayramov S, Guliyev N (2014). Changes in Rubisco activase gene expression and polypeptide content in Brachypodium distachyon. Plant Physiol Biochem 81, 61-66.
[4] Boex-Fontvieille E, Daventure M, Jossier M, Hodges M, Zivy M, Tcherkez G (2014). Phosphorylation pattern of Rubisco activase in Arabidopsis leaves. Plant Biol 16, 550-557.
[5] Carmo-Silva E, Scales JC, Madgwick PJ, Martin AJP (2015). Optimizing Rubisco and its regulation for greater resource use efficiency. Plant Cell Environ 38, 1817-1832.
[6] Chen J, Wang P, Mi HL, Chen GY, Xu DQ (2010). Reversible association of Ribulose-1,5-bisphosphate carboxylase/oxygenase activase with the thylakoid membrane depends upon the ATP level and pH in rice without heat stress. J Exp Bot 61, 2939-2950.
[7] Chen YX, Chen YS, Shi CM, Huang ZB, Zhang Y, Li SK, Li Y, Ye J, Yu C, Li Z, Zhang XQ, Wang J, Yang HM, Lin F, Chen Q (2018). SOAPnuke: a MapReduce acceleration- supported software for integrated quality control and preprocessing of high-throughput sequencing data. GigaScience 7, gix120.
[8] Clevering OA, Lissner J (1999). Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat Bot 66, 185-208.
[9] Cui S, Wang W, Zhang C (2002). Plant regeneration from callus cultures in two ecotypes of reed (Phragmites communis Trinius). In Vitro Cell Dev Biol Plant 38, 325-329.
[10] Cui SX, Hu J, Yang B, Shi L, Huang F, Tsai SN, Ngai SM, He YK, Zhang JH (2009). Proteomic characterization of Phragmites communis in ecotypes of swamp and desert dune. Proteomics 9, 3950-3967.
[11] Demirevska-kepova K, H?lzer R, Simova-stoilova L, Feller U (2005). Heat stress effects on Ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubisco activase in wheat leaves. Biol Plant 49, 521-525.
[12] Deridder BP, Shybut ME, Dyle MC, Kremling KAG, Shapiro MB (2012). Changes at the 3′-untranslated region stabilize Rubisco activase transcript levels during heat stress in Arabidopsis. Planta 236, 463-476.
[13] Flecken M, Wang H, Popilka L, Hartl FU, Bracher A, Hayer-Hartl M (2020). Dual functions of a Rubisco activase in metabolic repair and recruitment to carboxysomes. Cell 183, 457-473.
[14] Frazer KA, Pachter L, Poliakov A, Rubin EM, Dubchak I (2004). VISTA: computational tools for comparative genomics. Nucleic Acids Res 32 (Web Server issue),W273-9.
[15] Hall T (2011). BioEdit: an important software for molecular biology. GERF Bull Biosci 2, 60-61.
[16] Kim D, Langmead B, Salzberg SL (2015). HISAT: a fast spliced aligner with low memory requirements. Nature Me- thods 12, 357-360.
[17] Kim SY, Stessman DJ, Wright DA, Spalding MH, Huber SC, Ort DR (2020). Arabidopsis plants expressing only the redox-regulated RCA-α isoform have constrained photosynthesis and plant growth. Plant J 103, 2250-2262.
[18] Kumar RR, Goswami S, Singh K, Dubey K, Singh S, Sharma R, Verma N, Kala YK, Rai GK, Grover M, Mishra DC, Singh B, Pathak H, Chinnusamy V, Rai A, Praveen S (2016). Identification of putative Rubisco activase (TaRca1)—the catalytic chaperone regulating carbon assimilatory pathway in wheat (Triticum aestivum) un- der the heat stress. Front Plant Sci 7, 986.
[19] Kurek I, Chang TK, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu GH (2007). Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19, 3230-3241.
[20] Li B, Dewey CN (2011). RSEM: accurate transcript quantification from RNA-seq data with or without a reference genome. BMC Bioinformatics 12, 323.
[21] Li F, Fan G, Lu C, Xiao G, Zou C, Kohel RJ, Ma Z, Shang H, Ma X, Wu J, Liang X, Huang G, Percy RG, Liu K, Yang W, Chen W, Du X, Shi C, Yuan Y, Ye W, Liu X, Zhang X, Liu W, Wei H, Wei S, Huang G, Zhang X, Zhu S, Zhang H, Sun F, Wang X, Liang J, Wang J, He Q, Huang L, Wang J, Cui J, Song G, Wang K, Xu X, Yu JZ, Zhu Y, Yu S (2015). Genome sequence of cultivated upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33, 524-530.
[22] Li H, Lin WF, Shen ZJ, Peng H, Zhou JJ, Zhu XY (2021). Physiological and proteomic analyses of different ecotypes of reed (Phragmites communis) in adaption to natural drought and salinity. Front Plant Sci 12, 1-15.
[23] Li L, Chen X, Shi L, Wang CJ, Fu B, Qiu TH, Cui SX (2017). A proteome translocation response to complex desert stress environments in perennial Phragmites sympatric ecotypes with contrasting water availability. Front Plant Sci 8, 511.
[24] Love MI, Huber W, Anders S (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550.
[25] Merchant SS, Prochnik SE, Vallon O, Harris EH, Karpowicz SJ, Witman GB, Terry A, Salamov A, Fritz- Laylin LK, Maréchal-Drouard L, Marshall WF, Qu LH, Nelson DR, Sanderfoot AA, Spalding MH, Kapitonov VV, Ren QH, Ferris P, Lindquist E, Shapiro H, Lucas SM, Grimwood J, Schmutz J, Cardol P, Cerutti H, Chanfreau G, Chen CL, Cognat V, Croft MT, Dent R, Dutcher S, Ferna?ndez E, Fukuzawa H, Gonza?lez- Ballester D, Gonza?lez-Halphen D, Hallmann A, Hanikenne M, Hippler M, Inwood W, Jabbari K, Kalanon M, Kuras R, Lefebvre PA, Lemaire SD, Lobanov AV, Lohr M, Manuell A, Meier I, Mets L, Mittag M, Mittelmeier T, Moroney JV, Moseley J, Napoli C, Nedelcu AM, Niyogi K, Novoselov SV, Paulsen IT, Pazour G, Purton S, Ral JP, Rian?o-Pacho?n DM, Riekhof W, Rymarquis L, Schroda M, Stern D, Umen J, Willows R, Wilson N, Zimmer SL, Allmer J, Balk J, Bisova K, Chen CJ, Elias M, Gendler K, Hauser C, Lamb MR, Ledford H, Long JC, Minagawa J, Page MD, Pan JM, Pootakham W, Roje S, Rose A, Stahlberg E, Terauchi AM, Yang PF, Ball S, Bowler C, Dieckmann CL, Gladyshev VN, Green P, Jorgensen R, Mayfield S, Mueller-Roeber B, Rajamani S, Sayre RT, Brokstein P, Dubchak I, Goodstein D, Hornick L, Huang YW, Jhaveri J, Luo YG, Marti?nez D, Ngau WCA, Otillar B, Poliakov A, Porter A, Szajkowski L, Werner G, Zhou KM, Grigoriev IV, Rokhsar DS, Grossman AR (2007). The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245-250.
[26] Nagarajan R, Gill KS (2018). Evolution of Rubisco activase gene in plants. Plant Mol Biol 96, 69-87.
[27] Oh DH, Kowalski KP, Quach QN, Wijesinghege C, Tanford P, Dassanayake M, Clay K (2022). Novel genome characteristics contribute to the invasiveness of Phragmites australis (common reed). Mol Ecol 31, 1142-1159.
[28] Porebski S, Bailey LG, Baum BR (1997). Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15, 8-15.
[29] Portis AR Jr, Li C, Wang D, Salvucci ME (2008). Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 59, 1597-1604.
[30] Qian J, Rodermel SR (1993). Ribulose-1,5-bisphosphate carboxylase oxygenase activase cDNAs from Nicotiana tabacum. Plant Physiol 102, 683-684.
[31] Qiu TH, Cui SX (2021). Evolutionary analysis for Phragmites ecotypes based on full-length plastomes. Aquat Bot 170, 103349.
[32] Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao- Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A (2017). DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol Biol Evol 34, 3299-3302.
[33] Salse J, Bolot S, Throude M, Jouffffe V, Piegu B, Quraishi UM, Calcagno T, Cooke R, Delseny M, Feuillet C (2008). Identification and characterization of shared duplications between rice and wheat provide new insight into grass genome evolution. Plant Cell 20, 11-24.
[34] Salvucci ME, Crafts-Brandner SJ (2004). Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134, 1460-1470.
[35] Salvucci ME, van de Loo FJ, Stecher D (2003). Two isoforms of Rubisco activase in cotton, the products of separate genes not alternative splicing. Planta 216, 736-744.
[36] Salvucci ME, Werneke JM, Ogren WL, Portis AR Jr (1987). Purification and species distribution of Rubisco activase. Plant Physiol 84, 930-936.
[37] Shen JB, Orozco EM, Ogren WL (1991). Expression of the two isoforms of spinach Ribulose-1,5-bisphosphate carboxylase activase and essentiality of the conserved lysine in the consensus nucleotide-binding domain. J Biol Chem 266, 8963-8968.
[38] Sheng X, Dong X, Zhang S, Jiang LP, Tan LL, Li X (2011). Unequal distribution of ubiquitinated proteins during Pinus bungeana pollen development. Trees 25, 407-414.
[39] To KY, Suen DF, Chen SCG (1999). Molecular characterization of Ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice leaves. Planta 209, 66-76.
[40] Tseng HHE (2016). Cogent: reconstructing the coding genome using full-length transcriptome sequences without a reference genome. Plant & Animal Genome Conference XXIV. San Diego, CA.
[41] Wang D, Li XF, Zhou ZJ, Feng XP, Yang WJ, Jiang DA (2010). Two Rubisco activase isoforms may play different roles in photosynthetic heat acclimation in the rice plant. Physiol Plant 139, 55-67.
[42] Werneke JM, Zielinski RE, Ogren WL (1988). Structure and expression of spinach leaf cDNA encoding Ribulosebisphosphate carboxylase/oxygenase activase. Proc Natl Acad Sci USA 85, 787-791.
[43] Wickham H (2016). Ggplot2: Elegant Graphics for Data Analysis (2nd edition). New York: Springer-Verlag.
[44] Yin Z, Meng F, Song H, Wang X, Xu XM, Yu DY (2010). Expression quantitative trait loci analysis of two genes encoding Rubisco activase in soybean. Plant Physiol 152, 1625-1637.
[45] Yin Z, Zhang Z, Deng D, Chao MN, Gao QS, Wang YJ, Yang ZF, Bian YL, Hao DR, Xu CW (2014). Characterization of Rubisco activase genes in maize: an α-isoform gene functions alongside a β-isoform gene. Plant Physiol 164, 2096-2106.
[46] Zhang JH, Wang LJ, Pan QH, Wang YZ, Zhan JC, Huang WD (2008). Accumulation and subcellular localization of heat shock proteins in young grape leaves during cross- adaptation to temperature stresses. Sci Hortic 117, 231-240.
[47] Zhang N, Kallis RP, Ewy RG, Portis AR (2002). Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc Natl Acad Sci USA 99, 3330-3334.
[48] Zhang N, Portis AR (1999). Mechanism of light regulation of Rubisco: a specific role for the larger Rubisco activase isoform involving reductive activation by thioredoxin-f. Proc Natl Acad Sci USA 96, 9438-9443.
Outlines

/

674-3466/bottom_en.htm"-->