·REVIEWS· FORAGE BIOLOGY SPECIAL ISSUE

Research Progress on the Aspects of Molecular Breeding of Tall Wheatgrass

Expand
  • State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2022-07-14

  Accepted date: 2022-10-10

  Online published: 2022-10-25

Abstract

Tall wheatgrass (Elytrigia elongata), belonging to Thinopyrum genus, is a perennial cool season bunchgrass that was originated from southern Europe, Asia Minor and southern Russia. It has been widely cultivated in America, Canada, Australia and other countries for more than a half century. Since tall wheatgrass was induced in China, Zhensheng Li had used it as a wild parent for distant hybridization to breed wheat (Triticum aestivum) varieties from 1956. However, few reports were found for the wide cultivation of tall wheatgrass in China as a forage grass currently. It confers significant tolerance not only to saline and alkaline soil but also to waterlogging, drought and diseases. It can avoid competition of land and water between cereal crops and forage grass and benefit carbon neutrality and food security to cultivate tall wheatgrass on saline-alkali soils in the costal Circum-Bohai sea region. More than 10 cultivars has been released in America, Canada, Australia, Argentina and other European countries. Unfortunately, no tall wheatgrass variety has been certificated in China currently, which restrict the construction of Chinese costal grass belt. The genetic background is complex and the basic research is preliminary in tall wheatgrass, resulting in its breeding technology is lagged far behind the cereal crops like wheat and rice. Here, research progresses on the aspects of molecular breeding of tall wheatgrass including breeding history, speed breeding, tissue culture, genome sequencing and molecular markers were reviewed to promote tall wheatgrass breeding and construction of costal grass belt in China.

Cite this article

Hongwei Li, Qi Zheng, Bin Li, Zhensheng Li . Research Progress on the Aspects of Molecular Breeding of Tall Wheatgrass[J]. Chinese Bulletin of Botany, 2022 , 57(6) : 792 -801 . DOI: 10.11983/CBB22152

References

[1] 陈士强, 何震天, 张容, 王建华, 王锦荣, 陈建民, 陈秀兰 (2015). 长穗偃麦草优异基因的染色体定位及应用. 植物遗传资源学报 16, 1062-1066.
[2] 陈士强, 秦树文, 黄泽峰, 戴毅, 张璐璐, 高营营, 高勇, 陈建民 (2013). 基于SLAF-seq技术开发长穗偃麦草染色体特异分子标记. 作物学报 39, 727-734.
[3] 邓志勇, 张相岐 (2004). 长穗偃麦草中E和E1基因组高分子量麦谷蛋白基因启动子部分序列的进化分析. 遗传 26, 325-329.
[4] 房裕东, 韩天富 (2019). 作物快速育种技术研究进展. 作物杂志 35(2), 1-7.
[5] 谷安琳 (2004). 耐盐碱栽培牧草——长穗薄冰草. 中国草地 26(2), 9.
[6] 郭强, 孟林, 毛培春, 田小霞, 李杉杉, 张琳 (2014). 长穗偃麦草Actin基因片段克隆及表达模式分析. 生物技术通报 (3), 73-78.
[7] 黄峻, 奚惕, 姜彦秋 (1988). 长穗冰草的组织培养及植株再生. 植物生理学通讯 (6), 42.
[8] 李宏伟, 郑琪, 李滨, 赵茂林, 李振声 (2022). 一种耐盐碱牧草——长穗偃麦草研究进展. 草业学报 31, 190-199.
[9] 李家洋 (2007). 李振声论文选集. 北京: 科学出版社. pp. 78-91.
[10] 刘赢, 张军, 敖游, 宋丽莉, 束永俊 (2015). 基于高通量测序的长穗偃麦草功能分子标记发掘和分析. 生物信息学 13, 82-87.
[11] 默韶京, 刘桂茹, 郎明林 (2011). 长穗偃麦草DREB类基因EeAP2.2的克隆与序列分析. 植物遗传资源学报 12, 764-769.
[12] 秦树文, 戴毅, 陈士强, 张璐璐, 刘慧萍, 曹文广, Fedak G, 高勇, 陈建民 (2014). 基于TRAP的长穗偃麦草SCAR标记的开发及应用. 麦类作物学报 34, 1595-1602.
[13] 孙珊珊, 杨涛, 柳珊, 陈京瑞, 赵昌平, 唐益苗, 高世庆 (2013). 长穗偃麦草EeDREB2基因的克隆与生物信息学分析. 中国农学通报 29(15), 149-156.
[14] 徐蓓, 郭丽香, 赵昌平, 高世庆, 唐益苗 (2012). 长穗偃麦草EeSnRK2.6基因克隆及生物信息学分析. 麦类作物学报 32, 36-43.
[15] 胥伟华, 王建林, 刘小京, 谢旗, 杨维才, 曹晓风, 李振声 (2022). 建设“滨海草带”的科技缘由、内容与对策. 中国科学院院刊 37, 238-245.
[16] 杨国堂, 罗巧玲, 刘利勤, 张静, 李振声, 郑琪 (2019). 利用SLAF-seq技术开发十倍体长穗偃麦草专化分子标记. 中国农业大学学报 24, 1-5.
[17] 杨金贵, 米福贵, 闫利军, 刘伟伟, 伊风艳 (2012). 长穗偃麦草花序分化过程的观察. 中国草地学报 34(2), 47-51.
[18] 张琳, 郭强, 毛培春, 李杉杉, 孟林, 许庆方 (2014). 长穗偃麦草HKT1;4基因片段的克隆及序列分析. 基因组学与应用生物学 33, 869-874.
[19] 张艳红, 易津 (2007). 偃麦草属5种植物种子发育过程中生理生化的研究. 中国草地学报 29(6), 53-58.
[20] 赵树慧 (1994). 高产优质耐盐牧草——高冰草. 国外畜牧学——草原与牧草 (3), 20-22.
[21] 周妍彤, 郭强, 毛培春, 田小霞, 崔国文, 孟林 (2019). 长穗偃麦草成熟种胚高频再生体系. 草业科学 36, 1317-1322.
[22] 周妍彤, 郭强, 毛培春, 田小霞, 崔国文, 孟林 (2020). 长穗偃麦草EeSKOR基因片段的克隆、表达及其生物信息学分析. 基因组学与应用生物学 39, 4686-4694.
[23] 周妍彤, 张琳, 郭强, 田小霞, 孟林, 崔国文 (2018). 长穗偃麦草幼穗离体培养高频再生体系的建立. 植物生理学报 54, 1475-1480.
[24] 朱艳, 畅志坚, 张晓军, 李欣, 詹海仙, 郭慧娟, 乔麟轶 (2017). 偃麦草属分子标记开发研究进展. 山西农业科学 45, 659-662.
[25] Alderson J, Sharp WC (1994). Grass Varieties in the United States. Washington, DC: U.S. Department of Agriculture. pp. 79-81.
[26] Arterburn M, Kleinhofs A, Murray T, Jones S (2011). Polymorphic nuclear gene sequences indicate a novel genome donor in the polyploid genus Thinopyrum. Hereditas 148, 8-27.
[27] Asay KH, Jensen KB 1996). Wheatgrasses. In: Moser LE, Buxton DR, Casler MD, eds. Cool-Season Forage Grasses. Madison: Agron Monogr ASA, CSSA, SSSA. pp. 691-724.
[28] Azimi R, Borzelabad MJ, Feizi H, Azimi A (2014). Interaction of SiO2 nanoparticles with seed prechilling on germination and early seedling growth of tall wheatgrass (Agropyron elongatum L.). Pol J Chem Technol 16, 25-29.
[29] Baker L, Grewal S, Yang CY, Hubbart-Edwards S, Scholefield D, Ashling S, Burridge AJ, Przewieslik-Allen AM, Wilkinson PA, King IP, King J (2020). Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. Theor Appl Genet 133, 2213-2226.
[30] Bazzigalupi O, Pistorale SM, Andrés AN (2008). Salinity tolerance during seed germination from naturalized populations of tall wheatgrass (Thinopyrum ponticum). Cien Inv Agr 35, 277-285.
[31] Borrajo CI, Sánchez-Moreiras AM, Reigosa MJ (2018). Morpho-physiological responses of tall wheatgrass populations to different levels of water stress. PLoS One 13, e0209281.
[32] Chastain TG, Young III WC (1998). Vegetative plant development and seed production in cool-season perennial grasses. Seed Sci Res 8, 295-301.
[33] Chen Q, Conner RL, Laroche A, Thomas JB (1998). Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome 41, 580-586.
[34] Chen SQ, Huang ZF, Dai Y, Qin SW, Gao YY, Zhang LL, Gao Y, Chen JM (2013). The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS One 8, e65122.
[35] Csete S, Stranczinger S, Szalontai B, Farkas A, Pal R, Salamon-Albert E, Kocsis M, Tovari P, Vojtela T, Dezso J, Walcz I, Janowszky Z, Janowszky J, Borhidi A (2011). Tall wheatgrass cultivar Szarvasi-1 (Elymus elongatus subsp. ponticus cv. ‘Szarvasi-1’) as a potential energy crop for semi-arid lands of Eastern Europe. In: Nayeripou M, Kheshti M, eds. Sustainable Growth and Applications in Renewable Energy Sources. Rijeka: InTech. pp. 269-294.
[36] Dewey DR (1960). Salt tolerance of twenty-five strains of Agropyron. Agron J 52, 631-635.
[37] Dewey DR (1984). The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae. In: Gustafson JP, ed. Gene Manipulation in Plant Improvement New York: Plenum Press. pp. 209-279.
[38] Falasca SL, Miranda C, Alvarez SP (2017). Agro-ecological zoning for tall wheatgrass (Thinopyrum ponticum) as a potential energy and forage crop in salt-affected and dry lands of Argentina. Arch Crop Sci 1, 10-19.
[39] Gaál E, Valárik M, Molnár I, Farkas A, Linc G (2018). Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes. PLoS One 13, e0208840.
[40] Ge WY, Gao Y, Xu SS, Ma X, Wang HW, Kong LR, Sun SL (2021). Genome-wide identification, characteristics and expression of the prolamin genes in Thinopyrum elongatum. BMC Genom 22, 864.
[41] Jafari AA, Anvari H, Nakhjavan S, Rahmani E (2010). Effects of phenological stages on yield and quality traits in 22 populations of tall wheatgrass Agropyron elongatum grown in Lorestan, Iran. J Rangel Sci 1, 9-16.
[42] Jensen KB, Pearse G, Larson SR, Robins JG (2020). ‘AlkarXL’, a new tall wheatgrass cultivar for use on saline semiarid lands. J Plant Regist 14, 298-305.
[43] Kantarski T, Larson S, Zhang XF, DeHaan L, Borevitz J, Anderson J, Poland J (2017). Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum intermedium) using genotyping-by-sequencing. Theor Appl Genet 130, 137-150.
[44] Kindiger B (2002). Callus induction and plant regeneration in tall wheatgrass. (Thinopyrum ponticum (Podp.) Barkw & D. R. Dewey). Grassl Sci 48, 362-365.
[45] Konkin D, Hsueh YC, Kirzinger M, Kubaláková M, Haldar A, Balcerzak M, Han FP, Fedak G, Dole?el J, Sharpe A, Ouellet T (2022). Genomic sequencing of Thinopyrum elongatum chromosome arm 7EL, carrying fusarium head blight resistance, and characterization of its impact on the transcriptome of the introgressed line CS-7EL. BMC Genom 23, 228.
[46] Lalak J, Kasprzycka A, Martyniak D, Tys J (2016). Effect of biological pretreatment of Agropyron elongatum ‘BAMAR’ on biogas production by anaerobic digestion. Bioresour Technol 200, 194-200.
[47] Li DY, Zhang JW, Liu HJ, Tan BW, Zhu W, Xu LL, Wang Y, Zeng J, Fan X, Sha LN, Zhang HQ, Ma J, Chen GY, Zhou YH, Kang HY (2019). Characterization of a wheat- tetraploid Thinopyrum elongatum 1E(1D) substitution line K17-841-1 by cytological and phenotypic analysis and developed molecular markers. BMC Genom 20, 963.
[48] Liu LQ, Luo QL, Li HW, Li B, Li ZS, Zheng Q (2018a). Physical mapping of the blue-grained gene from Thinopyrum ponticum chromosome 4Ag and development of blue-grain-related molecular markers and a FISH probe based on SLAF-seq technology. Theor Appl Genet 131, 2359-2370.
[49] Liu LQ, Luo QL, Teng W, Li B, Li HW, Li YW, Li ZS, Zheng Q (2018b). Development of Thinopyrum ponticum-specific molecular markers and FISH probes based on SLAF-seq technology. Planta 247, 1099-1108.
[50] Locatelli A, Gutierrez L, Picasso Risso VD (2022). Vernalization requirements of Kernza intermediate wheatgrass. Crop Sci 62, 524-535.
[51] Lou HJ, Dong LL, Zhang KP, Wang DW, Zhao ML, Li YW, Rong CW, Qin HJ, Zhang AM, Dong ZY, Wang DW (2017). High-throughput mining of E-genome-specific SNPs for characterizing Thinopyrum elongatum introgressions in common wheat. Mol Ecol Resour 17, 1318-1329.
[52] Marburger JE, Wang RRC (1988). Anther culture of some perennial triticeae. Plant Cell Rep 7, 313-317.
[53] Martyniak D, ?urek G, Prokopiuk K (2017). Biomass yield and quality of wild populations of tall wheatgrass [Elymus elongatus (Host.) Runemark]. Biomass Bioenergy 101, 21-29.
[54] Matand K, Acquaah G, Kindiger B, Burns M (2005). Organogenesis in tall wheatgrass. PGRSO Quart 33, 76-82.
[55] Mishra D, Suri GS, Kaur G, Tiwari M (2021). Comprehensive analysis of structural, functional, and evolutionary dynamics of Leucine Rich Repeats-RLKs in Thinopyrum elongatum. Int J Biol Macromol 183, 513-527.
[56] Mullan DJ, Platteter A, Teakle NL, Appels R, Colmer TD, Anderson JM, Francki MG (2005). EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome 48, 811-822.
[57] Rogers AL, Bailey ET (1963). Salt tolerance trials with forage plants in south-western Australia. Aust J Exp Agric Anim Husb 3, 125-130.
[58] Shannon MC (1978). Testing salt tolerance variability among tall wheatgrass lines. Agron J 70, 719-722.
[59] Shu YJ, Zhang J, Ao Y, Song LL, Guo CH (2015). Analysis of the Thinopyrum elongatum transcriptome under water deficit stress. Int J Genomics 2015, 265791.
[60] Singh AK, Lo K, Dong CM, Zhang P, Trethowan RM, Sharp PJ (2020). Development of RNA-seq-based molecular markers for characterizing Thinopyrum bessarabicum and Secale introgressions in wheat. Genome 63, 525-534.
[61] Smith KF (1996). Tall wheatgrass (Thinopyrum ponticum (Podp.) Z.W. Liu+R.R.C. Wang): a neglected resource in Australian pasture. New Zealand J Agric Res 39, 623-627.
[62] Smith KF, Kelman WM (2000). Register of Australian herbage plant cultivars: Thinopyrum ponticum (Podp.) (tall wheatgrass) cv. ‘Dundas’. Aust J Exp Agric Anim Husb 40, 119-120.
[63] Smith KF, Lee CK, Borg PT, Flinn PC (1994). Yield, nutritive value, and phenotypic variability of tall wheatgrass grown in a nonsaline environment. Anim Prod Sci 34, 609-614.
[64] Tiryaki I, Karao?lu GB, Yücel G, Tuna M (2021). Assessment of Thinopyrum ponticum (Podp.) Barkworth & D.R. Dewey accessions using universal rice primers and molecular cytogenetics. Genet Resour Crop Evol 68, 1875-1888.
[65] Tong CY, Yang GT, AoenBolige, Terigen, Li HW, Li B, Li ZS, Zheng Q (2022). Screening of salt-tolerant Thinopyrum ponticum under two coastal region salinity stress levels. Front Genet 13, 832013.
[66] Trammell MA, Butler TJ, Word KM, Hopkins AA, Brummer EC (2016). Registration of NFTW6001 tall wheatgrass germplasm. J Plant Regist 10, 166-170.
[67] Trammell MA, Hopkins AA, Butler TJ, Walker D (2021). Registration of ‘Plainsmen’ tall wheatgrass. J Plant Regist 15, 415-421.
[68] Vogel KP, Moore KJ (1998). Forage yield and quality of tall wheatgrass accessions in the USDA germplasm collection. Crop Sci 38, 509-512.
[69] Wang HW, Sun SL, Ge WY, Zhao LF, Hou BQ, Wang K, Lyu Z, Chen LY, Xu SS, Guo J, Li M, Su PS, Li XF, Wang GP, Bo CY, Fang XJ, Zhuang WW, Cheng XX, Wu JW, Dong LH, Chen WY, Li W, Xiao GL, Zhao JX, Hao YC, Xu Y, Gao Y, Liu WJ, Liu YH, Yin HY, Li JZ, Li X, Zhao Y, Wang XQ, Ni F, Ma X, Li AF, Xu SS, Bai GH, Nevo E, Gao CX, Ohm H, Kong LR (2020). Horizontal gene transfer of Fhb7from fungus underlies Fusarium head blight resistance in wheat. Science 22, 368, eaba5435.
[70] Wang SW, Wang CY, Feng XB, Zhao JX, Deng PC, Wang YJ, Zhang H, Liu XL, Li TD, Chen CH, Wang BT, Ji WQ (2022). Molecular cytogenetics and development of St- chromosome-specific molecular markers of novel stripe rust resistant wheat-Thinopyrum intermedium and wheat- Thinopyrum ponticum substitution lines. BMC Plant Biol 22, 111.
[71] Wang ZY, Bell J, Hopkins A (2003). Establishment of a plant regeneration system for wheatgrasses (Thinopyrum, Agropyron and Pascopyrum). Plant Cell Tissue Organ Cult 73, 265-273.
[72] Yang GT, Tong CY, Li HW, Li B, Li ZS, Zheng Q (2022). Cytogenetic identification and molecular marker development of a novel wheat-Thinopyrum ponticum translocation line with powdery mildew resistance. Theor Appl Genet 135, 2041-2057.
[73] Zhang JP, Hewitt TC, Boshoff WHP, Dundas I, Upadhyaya N, Li JB, Patpour M, Chandramohan S, Pretorius ZA, Hovm?ller M, Schnippenkoetter W, Park RF, Mago R, Periyannan S, Bhatt D, Hoxha S, Chakraborty S, Luo M, Dodds P, Steuernagel B, Wulff BBH, Ayliffe M, McIntosh RA, Zhang P, Lagudah ES (2021). A recombined Sr26 and Sr61 disease resistance gene stack in wheat encodes unrelated NLR genes. Nat Commun 12, 3378.
[74] Zhang XY, Dong YC, Wang RRC (1996). Characterization of genomes and chromosomes in partial amphiploids of the hybrid Triticum aestivum × Thinopyrum ponticum by in situ hybridization, isozyme analysis, and RAPD. Genome 39, 1062-1071.
Outlines

/