Advance in Gene-editing Technology Based on CRISPR/Cas9 and Its Application in Plants
Received date: 2022-01-21
Revised date: 2022-04-24
Online published: 2022-04-24
CRISPR/Cas9 technology is a gene editing strategy using Cas9 nuclease guided by RNA to target an interest gene in genome. Recently, a large number of new-type gene editors based on the CRISPR/Cas9 have been updated rapidly and become more precisely and efficiently in gene editing, which has a great application prospect in crop molecular-designing breeding. This paper summarized the technical principles, editing effects and applications of the CRISPR/cas9 and its related gene editors, and also discussed the aspects of dilemmas, countermeasures and prospects, intending to provide reference for scientific researchers in the related fields.
Key words: CRISPR/Cas9; gene editing; technical progress; application in plants
He Xiaoling, Liu Pengcheng, Ma Bojun, Chen Xifeng . Advance in Gene-editing Technology Based on CRISPR/Cas9 and Its Application in Plants[J]. Chinese Bulletin of Botany, 2022 , 57(4) : 508 -531 . DOI: 10.11983/CBB22020
[1] | 苏钺凯, 邱镜仁, 张晗, 宋振巧, 王建华 (2019). CRISPR/ Cas9系统在植物基因组编辑中技术改进与创新的研究进展. 植物学报 54, 385-395. |
[2] | 谭禄宾, 孙传清 (2021). 四倍体野生稻快速驯化: 启动人类新农业文明. 植物学报 56, 134-137. |
[3] | 王影, 李相敢, 邱丽娟 (2018). CRISPR/Cas9基因组定点编辑中脱靶现象的研究进展. 植物学报 53, 528-541. |
[4] | 谢先荣, 曾栋昌, 谭健韬, 祝钦泷, 刘耀光 (2021). 基于CRISPR编辑系统的DNA片段删除技术. 植物学报 56, 44-49. |
[5] | Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, Chen PJ, Wilson C, Newby GA, Raguram A, Liu DR (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149-157. |
[6] | Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007). CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709-1712. |
[7] | Bolotin A, Quinquis B, Sorokin A, Ehrlich SD (2005). Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151, 2551-2561. |
[8] | Bolukbasi MF, Gupta A, Wolfe SA (2016). Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat Methods 13, 41-50. |
[9] | Cai WQ, Wang M (2019). Engineering nucleic acid chemistry for precise and controllable CRISPR/Cas9 genome editing. Sci Bull 64, 1841-1849. |
[10] | Cai YP, Chen L, Zhang Y, Yuan S, Su Q, Sun S, Wu CX, Yao WW, Han TF, Hou WS (2020). Target base editing in soybean using a modified CRISPR/Cas9 system. Plant Biotechnol J 18, 1996-1998. |
[11] | Chen JS, Dagdas YS, Kleinstiver BP, Welch MM, Sousa AA, Harrington LB, Sternberg SH, Joung JK, Yildiz A, Doudna JA (2017). Enhanced proofreading governs CRISPR-Cas9 targeting accuracy. Nature 550, 407-410. |
[12] | Chen LW, Park JE, Paa P, Rajakumar PD, Prekop HT, Chew YT, Manivannan SN, Chew WL (2021). Programmable C:G to G:C genome editing with CRISPR- Cas9-directed base excision repair proteins. Nat Commun 12, 1384. |
[13] | Chow RD, Chen JS, Shen J, Chen SD (2021). A web tool for the design of prime-editing guide RNAs. Nat Biomed Eng 5, 190-194. |
[14] | Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF (2010). Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 186, 757-761. |
[15] | Deveau H, Barrangou R, Garneau JE, Labonté J, Fremaux C, Boyaval P, Romero DA, Horvath P, Moineau S (2008). Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J Bacteriol 190, 1390-1400. |
[16] | Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, Virgin HW, Listgarten J, Root DE (2016). Optimized sgRNA design to maximize activity and minimize off- target effects of CRISPR-Cas9. Nat Biotechnol 34, 184-191. |
[17] | Duan JZ, Lu GQ, Xie Z, Lou ML, Luo J, Guo L, Zhang Y (2014). Genome-wide identification of CRISPR/Cas9 off- targets in human genome. Cell Res 24, 1009-1012. |
[18] | Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain AL, Bzdrenga J, Koonin EV, Charpentier E (2014). Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42, 2577-2590. |
[19] | Gallego-Bartolomé J, Gardiner J, Liu WL, Papikian A, Ghoshal B, Kuo HY, Zhao JMC, Segal DJ, Jacobsen SE (2018). Targeted DNA demethylation of the Arabidopsis genome using the human TET1 catalytic domain. Proc Natl Acad Sci USA 115, E2125-E2134. |
[20] | Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012). Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109, E2579-E2586. |
[21] | Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH, Bryson DI, Liu DR (2017). Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551, 464-471. |
[22] | Grünewald J, Zhou RH, Lareau CA, Garcia SP, Iyer S, Miller BR, Langner LM, Hsu JY, Aryee MJ, Joung JK (2020). A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing. Nat Biotechnol 38, 861-864. |
[23] | Hess GT, Frésard L, Han K, Lee CH, Li A, Cimprich KA, Montgomery SB, Bassik MC (2016). Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat Methods 13, 1036-1042. |
[24] | Hsu PD, Scott DA, Weinstein JA, Ran FA, Konermann S, Agarwala V, Li YQ, Fine EJ, Wu XB, Shalem O, Cradick TJ, Marraffini LA, Bao G, Zhang F (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31, 827-832. |
[25] | Hu B, Wang W, Ou SJ, Tang JY, Li H, Che RH, Zhang ZH, Chai XY, Wang HR, Wang YQ, Liang CZ, Liu LC, Piao ZZ, Deng QY, Deng K, Xu C, Liang Y, Zhang LH, Li LG, Chu CC (2015). Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47, 834-838. |
[26] | Hua K, Tao XP, Yuan FT, Wang D, Zhu JK (2018). Precise A·T to G·C base editing in the rice genome. Mol Plant 11, 627-630. |
[27] | Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD (2009). Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41, 494-497. |
[28] | Ines F, Anaïs LR, Krzysztof C, Kira SM, Anne LL, Janek B, Eugene VK, Emmanuelle C (2014). Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res 42, 2577-2590. |
[29] | Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987). Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169, 5429-5433. |
[30] | Jansen R, Gaastra W, Schouls LM (2002). Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43, 1565-1575. |
[31] | Jiang TT, Zhang XO, Weng ZP, Xue W (2022). Deletion and replacement of long genomic sequences using prime editing. Nat Biotechnol 40, 227-234. |
[32] | Jiang WY, Bikard D, Cox D, Zhang F, Marraffini LA (2013). RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31, 233-239. |
[33] | Jiang YY, Chai YP, Lu MH, Han XL, Lin QP, Zhang Y, Zhang Q, Zhou Y, Wang XC, Gao CX, Chen QJ (2020). Prime editing efficiently generates W542L and S621I double mutations in two ALS genes in maize. Genome Biol 21, 257. |
[34] | Jiao YQ, Wang YH, Xue DW, Wang J, Yan MX, Liu GF, Dong GJ, Zeng DL, Lu ZF, Zhu XD, Qian Q, Li JY (2010). Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat Genet 42, 541-544. |
[35] | Jin S, Fei HY, Zhu ZX, Luo YF, Liu JX, Gao SH, Zhang F, Chen YH, Wang YP, Gao CX (2020). Rationally designed APOBEC3B Cytosine base editors with improved specificity. Mol Cell 79, 728-740. |
[36] | Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816-821. |
[37] | Kim YG, Cha J, Chandrasegaran S (1996). Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93, 1156-1160. |
[38] | Kleinstiver BP, Pattanayak V, Prew MS, Tsai SQ, Nguyen NT, Zheng ZL, Joung JK (2016). High-fidelity CRISPR- Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490-495. |
[39] | Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016). Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420-424. |
[40] | Kuang YJ, Li SF, Ren B, Yan F, Spetz C, Li XJ, Zhou XP, Zhou HB (2020). Base-editing-mediated artificial evolution of OsALS1 in planta to develop novel herbicide-tolerant rice germplasms. Mol Plant 13, 565-572. |
[41] | Li C, Zhang R, Meng XB, Chen S, Zong Y, Lu CJ, Qiu JL, Chen YH, Li JY, Gao CX (2020a). Targeted, random mutagenesis of plant genes with dual cytosine and adenine base editors. Nat Biotechnol 38, 875-882. |
[42] | Li C, Zong Y, Jin S, Zhu HC, Lin DX, Li SN, Qiu JL, Wang YP, Gao CX (2020b). SWISS: multiplexed orthogonal genome editing in plants with a Cas9 nickase and engineered CRISPR RNA scaffolds. Genome Biol 21, 141. |
[43] | Li C, Zong Y, Wang YP, Jin S, Zhang DB, Song QN, Zhang R, Gao CX (2018a). Expanded base editing in rice and wheat using a Cas9-adenosine deaminase fusion. Genome Biol 19, 59. |
[44] | Li SN, Lin DX, Zhang YW, Deng M, Chen YX, Lv B, Li BS, Lei Y, Wang YP, Zhao L, Liang YT, Liu JX, Chen KL, Liu ZY, Xiao J, Qiu JL, Gao CX (2022). Genome-edited powdery mildew resistance in wheat without growth penalties. Nature 602, 455-460. |
[45] | Li TD, Yang XP, Yu Y, Si XM, Zhai XW, Zhang HW, Dong WX, Gao CX, Xu C (2018b). Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol 36, 1160-1163. |
[46] | Li ZX, Zhang DD, Xiong XY, Yan BY, Xie W, Sheen J, Li JF (2017). A potent Cas9-derived gene activator for plant and mammalian cells. Nat Plants 3, 930-936. |
[47] | Liang Z, Chen KL, Li TD, Zhang Y, Wang YP, Zhao Q, Liu JX, Zhang HW, Liu CM, Ran YD, Gao CX (2017). Efficient DNA-free genome editing of bread wheat using CRISPR/Cas9 ribonucleoprotein complexes. Nat Commun 8, 14261. |
[48] | Lin QP, Zong Y, Xue CX, Wang SX, Jin S, Zhu ZX, Wang YP, Anzalone AV, Raguram A, Doman JL, Liu DR, Gao CX (2020). Prime genome editing in rice and wheat. Nat Biotechnol 38, 582-585. |
[49] | Liu H, Ding YD, Zhou YQ, Jin WQ, Xie KB, Chen LL (2017). CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant 10, 530-532. |
[50] | Liu MZ, Zhang WW, Xin CC, Yin JH, Shang YF, Ai C, Li JX, Meng FL, Hu JZ (2021). Global detection of DNA repair outcomes induced by CRISPR-Cas9. Nucleic Acids Res 49, 8732-8742. |
[51] | Lowder LG, Zhang DW, Baltes NJ, Paul JW, Tang X, Zheng XL, Voytas DF, Hsieh TF, Zhang Y, Qi YP (2015). A CRISPR/Cas9 toolbox for multiplexed plant genome editing and transcriptional regulation. Plant Physiol 169, 971-985. |
[52] | Lowder LG, Zhou JP, Zhang YX, Malzahn A, Zhong ZH, Hsieh TF, Voytas DF, Zhang Y, Qi YP (2018). Robust transcriptional activation in plants using multiplexed CRISPR- Act2.0 and mTALE-Act systems. Mol Plant 11, 245-256. |
[53] | Lu Y, Wang JY, Chen B, Mo SD, Lian L, Luo YM, Ding DH, Ding YH, Cao Q, Li YC, Li Y, Liu GZ, Hou QQ, Cheng TT, Wei JT, Zhang YR, Chen GW, Song C, Hu Q, Sun S, Fan GY, Wang YT, Liu ZT, Song BA, Zhu JK, Li HR, Jiang LJ (2021). A donor-DNA-free CRISPR/Cas-based approach to gene knock-up in rice. Nat Plants 7, 1445-1452. |
[54] | Ma XN, Zhang XY, Liu HM, Li ZH (2020). Highly efficient DNA-free plant genome editing using virally delivered CRISPR-Cas9. Nat Plants 6, 773-779. |
[55] | Ma YQ, Zhang JY, Yin WJ, Zhang ZC, Song Y, Chang X (2016). Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat Methods 13, 1029-1035. |
[56] | Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV (2015). An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13, 722-736. |
[57] | Mali P, Yang LH, Esvelt KM, Aach J, Guell M, DiCarlo J, Norville JE, Church GM (2013). RNA-guided human genome engineering via Cas9. Science 339, 823-826. |
[58] | Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, Hsu F, Radey MC, Peterson SB, Mootha VK, Mougous JD, Liu DR (2020). A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631-637. |
[59] | Molla KA, Sretenovic S, Bansal KC, Qi YP (2021). Precise plant genome editing using base editors and prime editors. Nat Plants 7, 1166-1187. |
[60] | Nelson JW, Randolph PB, Shen SP, Everette KA, Chen PJ, Anzalone AV, An MR, Newby GA, Chen JC, Hsu A, Liu DR (2022). Engineered pegRNAs improve prime editing efficiency. Nat Biotechnol 40, 402-410. |
[61] | Nishida K, Arazoe T, Yachie N, Banno S, Kakimoto M, Tabata M, Mochizuki M, Miyabe A, Araki M, Hara KY, Shimatani Z, Kondo A (2016). Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729. |
[62] | Nishimasu H, Shi X, Ishiguro S, Gao LY, Hirano S, Okazaki S, Noda T, Abudayyeh OO, Gootenberg JS, Mori H, Oura S, Holmes B, Tanaka M, Seki M, Hirano H, Aburatani H, Ishitani R, Ikawa M, Yachie N, Zhang F, Nureki O (2018). Engineered CRISPR-Cas9 nuclease with expanded targeting space. Science 361, 1259-1262. |
[63] | Oakes BL, Fellmann C, Rishi H, Taylor KL, Ren SM, Nadler DC, Yokoo R, Arkin AP, Doudna JA, Savage DF (2019). CRISPR-Cas9 circular permutants as programmable scaffolds for genome modification. Cell 176, 254-267. |
[64] | Oliva R, Ji CH, Atienza-Grande G, Huguet-Tapia JC, Perez-Quintero A, Li T, Eom JS, Li CH, Nguyen H, Liu B, Auguy F, Sciallano C, Luu VT, Dossa GS, Cunnac S, Schmidt SM, Slamet-Loedin IH, Cruz CV, Szurek B, Frommer WB, White FF, Yang B (2019). Broad-spectrum resistance to bacterial blight in rice using genome editing. Nat Biotechnol 37, 1344-1350. |
[65] | Pan CT, Wu XC, Markel K, Malzahn AA, Kundagrami N, Sretenovic S, Zhang YX, Cheng YH, Shih PM, Qi YP (2021). CRISPR-Act3.0 for highly efficient multiplexed gene activation in plants. Nat Plants 7, 942-953. |
[66] | Papikian A, Liu WL, Gallego-Bartolomé J, Jacobsen SE (2019). Site-specific manipulation of Arabidopsis loci using CRISPR-Cas9 SunTag systems. Nat Commun 10, 729. |
[67] | Pattanayak V, Lin S, Guilinger JP, Ma EB, Doudna JA, Liu DR (2013). High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31, 839-843. |
[68] | Piatek A, Ali Z, Baazim H, Li LX, Abulfaraj A, Al-Shareef S, Aouida M, Mahfouz MM (2015). RNA-guided transcriptional regulation in planta via synthetic dCas9-based transcription factors. Plant Biotechnol J 13, 578-589. |
[69] | Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013). Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173-1183. |
[70] | Qin L, Li JY, Wang QQ, Xu ZP, Sun L, Alariqi M, Manghwar H, Wang GY, Li B, Ding X, Rui HP, Huang HM, Lu TL, Lindsey K, Daniell H, Zhang XL, Jin SX (2020). High-efficient and precise base editing of C·G to T·A in the allotetraploid cotton (Gossypium hirsutum) genome using a modified CRISPR/Cas9 system. Plant Biotechnol J 18, 45-56. |
[71] | Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu XB, Makarova KS, Koonin EV, Sharp PA, Zhang F (2015). In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186-191. |
[72] | Ren B, Yan F, Kuang YJ, Li N, Zhang DW, Zhou XP, Lin HH, Zhou HB (2018). Improved base editor for efficiently inducing genetic variations in rice with CRISPR/Cas9- guided hyperactive hAID mutant. Mol Plant 11, 623-626. |
[73] | Ren QR, Sretenovic S, Liu GQ, Zhong ZH, Wang JH, Huang L, Tang X, Guo YC, Liu L, Wu YC, Zhou J, Zhao YX, Yang H, He Y, Liu SS, Yin DS, Mayorga R, Zheng XL, Zhang T, Qi YP, Zhang Y (2021a). Improved plant cytosine base editors with high editing activity, purity, and specificity. Plant Biotechnol J 19, 2052-2068. |
[74] | Ren QR, Sretenovic S, Liu SS, Tang X, Huang L, He Y, Liu L, Guo YC, Zhong ZH, Liu GQ, Cheng YH, Zheng XL, Pan CT, Yin DS, Zhang YX, Li WF, Qi LW, Li CH, Qi YP, Zhang Y (2021b). PAM-less plant genome editing using a CRISPR-SpRY toolbox. Nat Plants 7, 25-33. |
[75] | Sakata RC, Ishiguro S, Mori H, Tanaka M, Seki M, Masuyama N, Nishida K, Nishimasu H, Kondo A, Nureki O, Tomita M, Aburatani H, Yachie N (2019). A single CRISPR base editor to induce simultaneous C-to-T and A-to-G mutations. BioRxiv doi: 10.1101/729269. |
[76] | Sandhya D, Jogam P, Allini VR, Abbagani S, Alok A (2020). The present and potential future methods for delivering CRISPR/Cas9 components in plants. J Genet Eng Biotechnol 18, 25. |
[77] | Shimatani Z, Kashojiya S, Takayama M, Terada R, Arazoe T, Ishii H, Teramura H, Yamamoto T, Komatsu H, Miura K, Ezura H, Nishida K, Ariizumi T, Kondo A (2017). Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat Biotechnol 35, 441-443. |
[78] | Slaymaker IM, Gao LY, Zetsche B, Scott DA, Yan WX, Zhang F (2016). Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84-88. |
[79] | Sun HY, Qian Q, Wu K, Luo JJ, Wang SS, Zhang CW, Ma YF, Liu Q, Huang XZ, Yuan QB, Han RX, Zhao M, Dong GJ, Guo LB, Zhu XD, Gou ZH, Wang W, Wu YJ, Lin HX, Fu XD (2014). Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nat Genet 46, 652-656. |
[80] | Symington LS, Gautier J (2011). Double-strand break end resection and repair pathway choice. Annu Rev Genet 45, 247-271. |
[81] | Tan JJ, Zhang F, Karcher D, Bock R (2019). Engineering of high-precision base editors for site-specific single nucleotide replacement. Nat Commun 10, 439. |
[82] | Tan JT, Zeng DC, Zhao YC, Wang YX, Liu TL, Li SC, Xue Y, Luo YY, Xie XR, Chen LT, Liu YG, Zhu QL (2022). PhieABEs: a PAM-less/free high-efficiency adenine base editor toolbox with wide target scope in plants. Plant Biotechnol J 20, 934-943. |
[83] | Thuronyi BW, Koblan LW, Levy JM, Yeh WH, Zheng C, Newby GA, Wilson C, Bhaumik M, Shubina-Oleinik O, Holt JR, Liu DR (2019). Continuous evolution of base editors with expanded target compatibility and improved activity. Nat Biotechnol 37, 1070-1079. |
[84] | Tian SW, Jiang LJ, Cui XX, Zhang J, Guo SG, Li MY, Zhang HY, Ren Y, Gong GY, Zong M, Liu F, Chen QJ, Xu Y (2018). Engineering herbicide-resistant watermelon variety through CRISPR/Cas9-mediated base-editing. Plant Cell Rep 37, 1353-1356. |
[85] | Veillet F, Perrot L, Chauvin L, Kermarrec MP, Guyon- Debast A, Chauvin JE, Nogué F, Mazier M (2019). Transgene-free genome editing in tomato and potato plants using Agrobacterium-mediated delivery of a CRISPR/ Cas9 cytidine base editor. Int J Mol Sci 20, 402. |
[86] | Veillet F, Perrot L, Guyon-Debast A, Kermarrec MP, Chauvin L, Chauvin JE, Gallois JL, Mazier M, Nogué F (2020). Expanding the CRISPR toolbox in P. patens using SpCas9-NG variant and application for gene and base editing in Solanaceae crops. Int J Mol Sci 21, 1024. |
[87] | Walton RT, Christie KA, Whittaker MN, Kleinstiver BP (2020). Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants. Science 368, 290-296. |
[88] | Wang SX, Zong Y, Lin QP, Zhang HW, Chai ZZ, Zhang DD, Chen KL, Qiu JL, Gao CX (2020). Precise, predictable multi-nucleotide deletions in rice and wheat using APOBEC-Cas9. Nat Biotechnol 38, 1460-1465. |
[89] | Wei C, Wang C, Jia M, Guo HX, Luo PY, Wang MG, Zhu JK, Zhang H (2021). Efficient generation of homozygous substitutions in rice in one generation utilizing an rABE8e base editor. J Integr Plant Biol 63, 1595-1599. |
[90] | Wu J, Chen C, Xian GY, Liu DX, Lin L, Yin SL, Sun QF, Fang YJ, Zhang H, Wang YP (2020). Engineering herbicide-resistant oilseed rape by CRISPR/Cas9-mediated cytosine base-editing. Plant Biotechnol J 18, 1857-1859. |
[91] | Xie JK, Huang XY, Wang X, Gou SX, Liang YH, Chen FB, Li N, Ouyang Z, Zhang QJ, Ge WK, Jin Q, Shi H, Zhuang ZP, Zhao XZ, Lian M, Wang JW, Ye YH, Quan LQ, Wu H, Wang KP, Lai LX (2020). ACBE, a new base editor for simultaneous C-to-T and A-to-G substitutions in mammalian systems. BMC Biol 18, 131. |
[92] | Xu RF, Kong FN, Qin RY, Li J, Liu XS, Wei PC (2021). Development of an efficient plant dual cytosine and adenine editor. J Integr Plant Biol 63, 1600-1605. |
[93] | Xu RF, Li J, Liu XS, Shan TF, Qin RY, Wei PC (2020a). Development of plant prime-editing systems for precise genome editing. Plant Commun 1, 100043. |
[94] | Xu W, Zhang CW, Yang YX, Zhao S, Kang GT, He XQ, Song JL, Yang JX (2020b). Versatile nucleotides substitution in plant using an improved prime editing system. Mol Plant 13, 675-678. |
[95] | Yan F, Kuang YJ, Ren B, Wang JW, Zhang DW, Lin HH, Yang B, Zhou XP, Zhou HB (2018). Highly efficient A·T to G·C base editing by Cas9n-guided tRNA adenosine deaminase in rice. Mol Plant 11, 631-634. |
[96] | Yeh WH, Chiang H, Rees HA, Edge ASB, Liu DR (2018). In vivo base editing of post-mitotic sensory cells. Nat Commun 9, 2184. |
[97] | Zeng DC, Liu TL, Tan JT, Zhang YL, Zheng ZY, Wang B, Zhou DG, Xie XR, Guo MH, Liu YG, Zhu QL (2020). PhieCBEs: plant high-efficiency cytidine base editors with expanded target range. Mol Plant 13, 1666-1669. |
[98] | Zhang R, Liu JX, Chai ZZ, Chen S, Bai Y, Zong Y, Chen KL, Li JY, Jiang LJ, Gao CX (2019). Generation of herbicide tolerance traits and a new selectable marker in wheat using base editing. Nat Plants 5, 480-485. |
[99] | Zhang XH, Zhu BY, Chen L, Xie L, Yu WS, Wang Y, Li LX, Yin SM, Yang L, Hu HD, Han HH, Li YM, Wang LR, Chen G, Ma XY, Geng HQ, Huang WF, Pang XF, Yang ZZ, Wu YX, Siwko S, Kurita R, Nakamura Y, Yang L, Liu MY, Li DL (2020). Dual base editor catalyzes both cytosine and adenine base conversions in human cells. Nat Biotechnol 38, 856-860. |
[100] | Zhang Y, Heidrich N, Ampattu BJ, Gunderson CW, Seifert HS, Schoen C, Vogel J, Sontheimer EJ (2013). Processing-independent CRISPR RNAs limit natural transformation in Neisseria meningitidis. Mol Cell 50, 488-503. |
[101] | Zhao DD, Li J, Li SW, Xin XQ, Hu MZ, Price MA, Rosser SJ, Bi CH, Zhang XL (2021). Glycosylase base editors enable C-to-A and C-to-G base changes. Nat Biotechnol 39, 35-40. |
[102] | Zhou CY, Sun YD, Yan R, Liu YJ, Zuo EW, Gu C, Han LX, Wei Y, Hu XD, Zeng R, Li YX, Zhou HB, Guo F, Yang H (2019). Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275-278. |
[103] | Zhu HC, Li C, Gao CX (2020). Applications of CRISPR-Cas in agriculture and plant biotechnology. Nat Rev Mol Cell Biol 21, 661-677. |
[104] | Zhu XG, Zhu JK (2021). Precision genome editing heralds rapid de novo domestication for new crops. Cell 184, 1133-1134. |
[105] | Zong Y, Liu YJ, Xue CX, Li BS, Li XY, Wang YP, Li J, Liu GW, Huang XX, Cao XF, Gao CX (2022). An engineered prime editor with enhanced editing efficiency in plants. Nat Biotechnol doi: 10.1038/s41587-022-01254-w. |
[106] | Zong Y, Song QN, Li C, Jin S, Zhang DB, Wang YP, Qiu JL, Gao CX (2018). Efficient C-to-T base editing in plants using a fusion of nCas9 and human APOBEC3A. Nat Biotechnol 36, 950-953. |
[107] | Zong Y, Wang YP, Li C, Zhang R, Chen KL, Ran YD, Qiu JL, Wang DW, Gao CX (2017). Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol 35, 438-440. |
[108] | Zou RS, Liu Y, Wu B, Ha T (2021). Cas9 deactivation with photocleavable guide RNAs. Mol Cell 81, 1553-1565. |
[109] | Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP (2018). De novo domestication of wild tomato using genome editing. Nat Biotechnol 81, 1211-1216. |
[110] | Zuo EW, Sun YD, Yuan TL, He BB, Zhou CY, Ying WQ, Liu J, Wei W, Zeng R, Li YX, Yang H (2020). A rationally engineered cytosine base editor retains high on-target activity while reducing both DNA and RNA off-target effects. Nat Methods 17, 600-604. |
/
〈 | 〉 |