EXPERIMENTAL COMMUNICATIONS

Enhanced Attraction of Mymarids (Stethynium empoascae) by Volatiles from Tea Flowers

Expand
  • 1The Province Key Laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, School of Life Scien¬ces, Anqing Normal University, Anqing 246133, China
    2School of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China

Received date: 2021-05-08

  Accepted date: 2021-08-09

  Online published: 2021-08-11

Abstract

The tea plant (Camellia sinensis) is an important economic crop in China. Tea green leafhopper (Empoasca onukii) is the most damaging pest of tea plants and mymarid (Stethynium empoascae) has been classified as its egg parasitoid. However, the mechanism underlying the olfactory attraction of mymarids by tea flowers is still elusive. By factorial design, we showed that tea flowers could attract mymarids which are natural enemies of leafhopper and accelerated the parasitic behavior of mymarid. Tea flower specifically decreased the search time of parasitic behavior of mymarid with tea shoots infested by leafhoppers. However, the boosting effect of tea flower was lost in healthy tea shoots. Compared with health tea shoots, the types and relative contents of volatiles were dramatically increased in infested tea shoots using gas chromatography-mass spectrometry (GC-MS). We classified the volatile expression patterns of healthy tea shoots, infested tea shoots and tea flowers using partial least squares discrimination analysis (PLS-DA). Based on variable importance for the projection (VIP), and identified 17 tea flower volatiles which could potentially discriminate the patterns of volatiles in the three tissues. Olfactometer bioassay showed that α-phellandrene, cis-linaloloxide, trans-linaloloxide, benzaldehyde and acetophenone significantly attract mymarids. Our work has preliminarily demonstrated the defense mechanism mediated by tea flowers and provides novel clues for biological control of tea green leafhopper management.

Cite this article

Dan Mu, Zehua Qi, Qin Li, Kexin Liang, Shaogui Hua, Xingyu Zhu, Mengjie Jiao, Yuchun Rao, Tingzhe Sun . Enhanced Attraction of Mymarids (Stethynium empoascae) by Volatiles from Tea Flowers[J]. Chinese Bulletin of Botany, 2021 , 56(5) : 559 -572 . DOI: 10.11983/CBB21078

References

[1] 边磊 (2014). 基于远程寄主定位机理的假眼小绿叶蝉化学生态和物理调控. 博士论文. 北京: 中国农业科学院. pp. 28-46.
[2] 陈璇, 胡福良 (2009). 蜜蜂花粉采集行为的调控机制. 昆虫知识 46, 490-494.
[3] 董燕梅, 张文颖, 凌正一, 李靖锐, 白红彤, 李慧, 石雷 (2020). 转录因子调控植物萜类化合物生物合成研究进展. 植物学报 55, 340-350.
[4] 戈林泉, 胡中卫, 吴进才 (2013). 大豆、玉米与水稻配置对稻田寄生蜂的影响. 应用昆虫学报 50, 921-927.
[5] 韩宝瑜, 林金丽, 周孝贵, 章金明 (2009). 假眼小绿叶蝉卵及卵寄生蜂缨小蜂形态观察和寄生率考评. 安徽农业大学学报 36, 13-17.
[6] 韩善捷, 潘铖, 韩宝瑜 (2016). 假眼小绿叶蝉为害致茶梢挥发物变化及其引诱微小裂骨缨小蜂效应. 中国生物防治学报 32, 142-148.
[7] 李飞, 杨丹, 郑姣莉, 姚经武, 朱志刚, 黄大野, 曹春霞 (2020). 中国茶园主要害虫生物防治研究进展. 湖北农业科学 59(10), 5-9, 22.
[8] 李秋玲 (2018). 班氏跳小蜂气味结合蛋白OBPs的结合特性分析. 硕士论文. 武汉: 华中农业大学. pp. 25-28.
[9] 林金丽 (2010). 茶树-假眼小绿叶蝉-缨小蜂间化学和色彩通讯机理研究. 硕士论文. 扬州: 扬州大学. pp. 7-12.
[10] 林郑和, 钟秋生, 陈常颂, 陈志辉, 游小妹 (2015). 不同香型茶树鲜叶挥发性组分与β-葡萄糖苷酶的相关性分析. 植物学报 50, 713-720.
[11] 刘丰静, 冉伟, 李喜旺, 汪素琴, 孙晓玲 (2020). 小贯小绿叶蝉在5个茶树品种(系)上的蜜露排泄量与茶树叶片结构比较. 茶叶科学 40, 625-631.
[12] 孟召娜, 边磊, 罗宗秀, 李兆群, 辛肇军, 蔡晓明 (2018). 全国主产茶区茶树小绿叶蝉种类鉴定及分析. 应用昆虫学报 55, 514-526.
[13] 穆丹 (2011). 茶树挥发性信息素调控假眼小绿叶蝉及叶蝉三棒缨小蜂行为的功效. 博士论文. 北京: 中国农业科学院. pp. 12-62.
[14] 聂晓培 (2017). 班氏跳小蜂寄主定位的嗅觉机制. 硕士论文. 武汉: 华中农业大学. pp. 41-47.
[15] 潘铖, 林金丽, 韩宝瑜 (2016). 茶梢信息物引诱叶蝉三棒缨小蜂效应的检测. 生态学报 36, 3785-3795.
[16] 吴国火, 崔林, 王梦馨, 李红亮, 韩宝瑜 (2020). 茶树花香气及茶叶气味对中华蜜蜂的引诱效应. 生态学报 40, 4024-4031.
[17] 张云宣 (2018). 挥发性物质介导的稻纵卷叶螟姬小蜂搜寻与定位寄主行为机制初步研究. 硕士论文. 南宁: 广西大学. pp. 38-42.
[18] 赵冬香, 陈宗懋, 程家安 (2000). 茶小绿叶蝉优势种的归属. 茶叶科学 20, 101-104.
[19] 左照江, 张汝民, 高岩 (2009). 植物间挥发物信号的研究进展. 植物学报 44, 245-252.
[20] Aartsma Y, Leroy B, Van Der Werf W, Dicke M, Poelman EH, Bianchi FJJA (2019). Intraspecific variation in herbivore-induced plant volatiles influences the spatial range of plant-parasitoid interactions. Oikos 128, 77-86.
[21] Boachon B, Junker RR, Miesch L, Bassard JE, Hofer R, Caillieaudeaux R, Seidel DE, Lesot A, Heinrich C, Ginglinger JF, Allouche L, Vincent B, Wahyuni DSC, Paetz C, Beran F, Miesch M, Schneider B, Leiss K, Werck-Reichhart D (2015). CYP76C1 (Cytochrome P450)-mediated linalool metabolism and the formation of volatile and soluble linalool oxides in Arabidopsis flowers. Plant Cell 27, 2972-2990.
[22] Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F (2019). The role of volatiles in plant communication. Plant J 100, 892-907.
[23] Cao H (2013). Polysaccharides from Chinese tea: recent advance on bioactivity and function. Int J Biol Macromol 62, 76-79.
[24] Chen D, Chen GJ, Sun Y, Zeng XX, Ye H (2020). Physiological genetics, chemical composition, health benefits and toxicology of tea ( Camellia sinensis L.) flower: a review. Food Res Int 137, 109584.
[25] Chen GJ, Yuan QX, Saeeduddin M, Ou SY, Zeng XX, Ye H (2016). Recent advances in tea polysaccharides: extraction, purification, physicochemical characterization and bioactivities. Carbohydr Polym 153, 663-678.
[26] D'Alessandro M, Brunner V, Von Mérey G, Turlings TCJ (2009). Strong attraction of the parasitoid Cotesia marginiventris towards minor volatile compounds of maize. J Chem Ecol 35, 999-1008.
[27] Desurmont GA, Von Arx M, Turlings TCJ, Schiestl FP (2020). Floral odors can interfere with the foraging behavior of parasitoids searching for hosts. Front Ecol Evol 8, 148.
[28] Fu JY, Han BY, Xiao Q (2014). Mitochondrial COI and 16sRNA evidence for a single species hypothesis of E. vitis, J. formosana and E. onukii in East Asia. PLoS One 9, e115259.
[29] Gorden NLS, Adler LS (2018). Consequences of multiple flower-insect interactions for subsequent plant-insect interactions and plant reproduction. Am J Bot 105, 1835-1846.
[30] Han BY, Chen ZM (2002a). Composition of the volatiles from intact and mechanically pierced tea aphid-tea shoot complexes and their attraction to natural enemies of the tea aphid. J Agric Food Chem 50, 2571-2575.
[31] Han BY, Chen ZM (2002b). Composition of the volatiles from intact and tea aphid-damaged tea shoots and their allurement to several natural enemies of the tea aphid. J Appl Entomol 126, 497-500.
[32] Huang MS, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, Tholl D (2012). The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol 193, 997-1008.
[33] Ishiwari H, Suzuki T, Maeda T (2007). Essential compounds in herbivore-induced plant volatiles that attract the predatory mite Neoseiulus womersleyi. J Chem Ecol 33, 1670-1681.
[34] Joshi R, Poonam, Saini R, Guleria S, Babu GDK, Kumari M, Gulati A (2011). Characterization of volatile components of tea flowers ( Camellia sinensis) growing in Kangra by GC/MS. Nat Prod Commun 6, 1155-1158.
[35] Lee LC, Liong CY, Jemain AA (2018). Partial least squares- discriminant analysis (PLS-DA) for classification of high- dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps. Analyst 143, 3526-3539.
[36] Liu FL, Zhang XW, Chai JP, Yang DR (2006). Pollen phenolics and regulation of pollen foraging in honeybee colony. Behav Ecol Sociobiol 59, 582-588.
[37] Maffei ME, Gertsch J, Appendino G (2011). Plant volatiles: production, function and pharmacology. Nat Prod Rep 28, 1359-1380.
[38] McCormick AC, Unsicker SB, Gershenzon J (2012). The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci 17, 303-310.
[39] Mu D, Cui L, Ge J, Wang MX, Liu LF, Yu XP, Zhang QH, Han BY (2012). Behavioral responses for evaluating the attractiveness of specific tea shoot volatiles to the tea green leafhopper, Empoaca vitis. Insect Sci 19, 229-238.
[40] Poveda K, Steffan-Dewenter I, Scheu S, Tscharntke T (2003). Effects of below- and above-ground herbivores on plant growth, flower visitation and seed set. Oecologia 135, 601-605.
[41] Qin DZ, Zhang L, Xiao Q, Dietrich C, Matsumura M (2015). Clarification of the identity of the tea green leafhopper based on morphological comparison between Chinese and Japanese Specimens. PLoS One, 10, e0139202.
[42] Rodriguez-Saona CR, Byers JA, Schiffhauer D (2012). Effect of trap color and height on captures of blunt-nosed and sharp-nosed leafhoppers (Hemiptera: Cicadellidae) and non-target arthropods in cranberry bogs. Crop Prot 40, 132-144.
[43] Rohrig E, Sivinski J, Teal P, Stuhl C, Aluja M (2008). A floral-derived compound attractive to the tephritid fruit fly parasitoid Diachasmimorpha longicaudata (Hymenoptera: Braconidae). J Chem Ecol 34, 549-557.
[44] Sanou A, Traoré F, Ba MN, Dabiré-Binso CL, Pittendrigh BR, Sanon A (2019). Effects of volatiles from Clavigralla tomentosicollis Stål. (Hemiptera: Coreidae) adults on the host location behavior of the egg parasitoid Gryon fulviventre (Crawford) (Hymenoptera: Scelionidae). Int J Insect Sci 11, 1-7.
[45] Schiestl FP (2015). Ecology and evolution of floral volatile-mediated information transfer in plants. New Phytol 206, 571-577.
[46] Schnee C, Kollner TG, Held M, Turlings TCJ, Gershenzon J, Degenhardt J (2006). The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc Natl Acad Sci USA 103, 1129-1134.
[47] Sharma R, Rana A, Kumar S (2020). Phytochemical investigation and bioactivity studies of flowers obtained from different cultivars of Camellia sinensis plant. Nat Prod Res doi: 10.1080/14786419.2020.1844696.
[48] Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG, Leeson G, Nicol HI (2011). Insect attraction to synthetic herbivore-induced plant volatile-treated field crops. Agr Forest Entomol 13, 45-57.
[49] Takemoto H, Takabayashi JJ (2015). Parasitic wasps Aphidius ervi are more attracted to a blend of host-induced plant volatiles than to the independent compounds. J Chem Ecol 41, 801-807.
[50] Tan XL, Hu NN, Zhang F, Ramirez-Romero R, Desneux N, Wang S, Ge F (2016). Mixed release of two parasitoids and a polyphagous ladybird as a potential strategy to control the tobacco whitefly Bemisia tabaci. Sci Rep 6, 28245.
[51] Tang GY, Meng X, Gan RY, Zhao CN, Liu Q, Feng YB, Li S, Wei XL, Atanasov AG, Corke H, Li HB (2019). Health functions and related molecular mechanisms of tea components: an update review. Int J Mol Sci 20, 6196.
[52] Turlings TCJ, Erb M (2018). Tritrophic interactions mediated by herbivore-induced plant volatiles: mechanisms, ecological relevance, and application potential. Annu Rev Entomol 63, 433-452.
[53] Wang P, Lou YG (2013). Screening and field evaluation of synthetic plant volatiles as attractants for Anagrus nilaparvatae Pang et Wang, an egg parasitoid of rice planthoppers. Chin J Appl Entomol 50, 431-440.
[54] Wang ZZ, Liu YQ, Shi M, Huang JH, Chen XX (2019). Parasitoid wasps as effective biological control agents. J Integ Agric 18, 705-715.
[55] Wei JN, Kang L (2011). Roles of (Z)-3-hexenol in plant- insect interactions. Plant Signal Behav 6, 369-371.
[56] Xiu CL, Zhang W, Xu B, Wyckhuys KAG, Cai XM, Su HS, Lu YH (2019). Volatiles from aphid-infested plants attract adults of the multicolored Asian lady beetle Harmonia axyridis. Biol Control 129, 1-11.
[57] Ye J, Zhang LL, Zhang X, Wu XJ, Fang RX (2021). Plant defense networks against insect-borne pathogens. Trends Plant Sci 26, 272-287.
[58] Zhao MY, Wang L, Wang JM, Jin JY, Zhang N, Lei L, Gao T, Jing TT, Zhang SR, Wu Y, Wu B, Hu YQ, Wan XC, Schwab W, Song CK (2020). Induction of priming by cold stress via inducible volatile cues in neighboring tea plants. J Integr Plant Biol 62, 1461-1468.
Outlines

/