Characteristics of Conifer Genome and Recent Advances in Conifer Sequence Resources Mining

Expand
  • Key Laboratory of Tree Breeding and Cultivation, State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China

Received date: 2013-01-26

  Revised date: 2013-07-19

  Online published: 2013-12-03

Abstract

Conifers are the largest and most ubiquitous group of gymnosperms. They are woody perennials that shape many northern hemisphere ecosystems and support large industries through the provision of wood, fiber, and energy. Sequencing conifer genomes is relevant because of their taxonomic position, ecological significance, and economic importance. However, the large and complex genomes of conifers have hindered the mining process, and by April 2013, no whole-genome sequences for conifer have been obtained. With the emergence of next-generation sequencing and rapid development of bioinformatics, the conifer sequence resources mining project has transitioned from the transcriptome to whole-genome sequencing projects, initiated in Pinus, Picea and Pseudotsuga genus. This review summarizes the characteristics of the conifer genome, reviews the current status of genome sequencing of conifers and outlines the current state of knowledge concerning the genomes of conifer (Pinus taeda, Picea abies and Picea glauca).

Cite this article

Chenlu Xu, Xiaomei Sun, Shougong Zhang . Characteristics of Conifer Genome and Recent Advances in Conifer Sequence Resources Mining[J]. Chinese Bulletin of Botany, 2013 , 48(6) : 684 -693 . DOI: 10.3724/SP.J.1259.2013.00684

References

[1]许晨璐,张守攻,孙晓梅.针叶树基因组资源及其在育种中的作用.[J].浙江农林大学学报,2012, 29: 768-777
[2]Ahuja MR,Neale DB (2005).Evolution of genome size in conifers. [J].Silvae Genet,2005,54:126-137
[3]Allona I,Quinn M,Shoop E,Swope K,Cyr SS,Carlis J,Riedl J,Retzel E,Campbell MM,Sederoff R,Whetten RW.Analysis of xylem formation in pine by cDNA sequencing[J].Proc Natl Acad Sci USA,1998,95:9693-9698
[4]Bautista R,Villalobos DP,Díaz-Moreno S,Cantón FR,Cánovas FM,Gonzalo Claros M.Toward a Pinus pinaster bacterial artificial chromosome library[J].Ann For Sci,2007,64:855-864
[5]Bennett MD,Leitch IJ,Price HJ,Johnston JS.Comparisons with Caenorhabditis (~100 Mb) and Drosophila (~175 Mb) using flow cytometry show genome size in Arabidopsis to be ~157 Mb and thus ~25% larger than the Arabidopsis genome initiative estimate of ~125 Mb[J].Annals of Botany,2003,91:547-557
[6]Buschizzo E,Ritland C,Bohlmann J,Ritland K .Slow but not low: genomic comparisons reveals slower evolutionary rate and higher dN/dS in conifers compared to angiosperms.[J].BMC Evol Biol,(2012),12:8.:-
[7]Chen J,Uebbing S,Gyllenstrand N,Lagercrantz U,Lascoux M,K?llman T .Sequencing of the needle transcriptome from Norway spruce (Picea abies Karst L.) reveals lower substitution rates,but similar selective constraints in gymnosperms and angiosperms. [J].BMC Genomics,(2012),13:589.:-
[8]Claros MG,Bautista R,Guerrero-Fernández D,Benzerki H,Seoane P,Fernández-Pozo N .Why assembling plant genome sequences is so challenging. [J].Biology,(2012),1:439-459
[9]Collins F .Has the revolution arrived? [J].Nature,(2010),464:674-675
[10]Cronn R,Knaus BJ,Dolan P,Denver D,Clair BS .Transcriptome dynamics of the dormancy-growth transition in Douglas-fir needles. [J].Plant and Animal Genome XXI Conference,San Diego,CA.,(2013),:-
[11]Cui L,Wall PK,Leebens-Mack JH,Lindsay BG,Soltis DE,Doyle JJ,Soltis S,Carlson JE,Arumuganathan K,Barakat A,Albert VA,Ma H,dePamphilis CW.Widespread genome duplications throughout the history of flowering plants. [J].Genome Res, (2006),16:738-749
[12]Delseny M,Han B,Hsing YI.High throughput DNA sequencing: The new sequencing revolution[J].Plant Sci,2010,179:407-422
[13]Díaz-Sala C,Cervera M .Promoting a functional and comparative understanding of the conifer genome- implementing applied aspects for more productive and adapted forests (ProCoGen). [J].BMC Proceedings,(2011),5,158.:-
[14]Dubos C,Plomion C.Identification of water-deficit responsive genes in maritime pine (Pinus pinaster Ait[J].) roots. Plant Mol. Biol,2003,51:249-262
[15]Fernández-Pozo N,Canales J,Guerrero-Fernández D,Villalobos DP,Diaz-Moreno SM,Bautista R,Flores- Monterroso A,Guevara MA,Perdiguero P,Collada C,Cervera MT,Soto A,Ordas R,Canton FR,Avila C,Canovas FM,Claros MG (2011).EuroPineDB: a high-coverage web database for maritime pine transcriptome[J].BMC Genomics,2011,12:366-
[16]Friesen N,Brandes A,Heslop-Harrison JS.Diversity,origin,and distribution of retrotransposons (gypsy and copia) in conifers[J].Molecular Biology and Evolution,2001,18:1176-1188
[17]Futamura N,Totoki Y,Toyoda A,Igasaki T,Nanjo T,Seki M,Sakaki Y,Mari A,Shinozaki K,Shinohara K .Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. [J].BMC Genomics,(2008),9: 383.:-
[18]Green ED .Strategies for the systematic sequencing of complex genomes. [J].Nat Rev Genet,(2001),2:573-583
[19]Guevara MA,Soto A,Collada C,Plomion C,Savolainen O,Neale DB,González-Martínez SC,Cervera MT .Genomics applied to the study of adaptation in pine species. [J].Invest Agrar: Sist Recur For,(2005),14:292-306
[20]Hamberger B,Hall D,Yuen M,Oddy C,Hamberger B,Keeling CI,Ritland C,Ritland K,Bohlmann J .Targeted isolation,sequence assembly and characterization of two white spruce (Picea glauca) BAC clones for terpenoid synthase and cytochrome P450 genes involved in conifer defence reveal insights into a conifer genome. [J].BMC Plant Biol,(2009),9:106.:-
[21]Hao DC,Ge G,Xiao P,Zhang Y,Yang L .The first insight into the t specific Taxus transcriptome via Illumina second generation sequencing. [J].,(2011),6: e21220:-
[22]Ingvarsson PK .A first look at the large and complex genome of Norway spruce (Picea abies). [J].Plant and Animal Genome XX Conference,San Diego,CA.,(2012),:-
[23]Jermstad KD,Eckert AJ,Wegrzyn JL,Kinloch BB,Mix AD,Davis DA,Burton DC,Neale DB.Comparative mapping in Pinus: Sugar pine (Pinus lambertiana Dougl) and Loblolly pine (Pinus taeda L[J].). Tree Genet. Genomes,2011,7:457-468
[24]Kinlaw CS,Neale DB .Complex gene families in pine genomes. [J].Trends in Plant Science,(1997),2:356-359
[25]Kirst M,Johnson AF,Baucom C,Ulrich E,Hubbard K,Staggs R,Paule C,Retzel E,Whetten R and Sederoff R.Apparent homology of expressed genes from wood-forming ts of loblolly pine (Pinus taeda,L[J].) with Arabidopsis thaliana. Proc Natl Acad Sci USA,2003,100:7383-7388
[26]Kovach A,Wegrzyn JL,Parra G,Holt C,Bruening GE,Loopstra CA,Hartigan J,Yandell M,Langley CH,Korf I,Neale DB .The Pinus taeda genome is characterized by diverse and highly diverged repetitive sequences[J].BMC Genomics, (2010),11:420.:-
[27]Kriebel HB .DNA-Sequence Components of the Pinus Strobus Nuclear Genome. [J].Can. J. For. Res.,(1985),15:1-4
[28]Krutovsky KV,Troggio M,Brown GR,Jermstad KD,Neale DB.Comparative mapping in the Pinaceae[J].Genetics,2004,168:447-461
[29]Li XG,Wu HX,Dillon SK Southerton SG .Generation and analysis of expressed sequence tags from six developing xylem libraries in Pinus radiata,D. Don. [J].BMC Genomics,(2009),10,41.:-
[30]Lorenz WW,Neale DB,Jermstad KD,Howe GT,Rogers DL,Bordeaux JM,Ayyampalayam S,Dean JFD .Conifer DBMagic: a database housing multiple de novo transcriptome assemblies for twelve diverse conifer species. [J].,(2012),:-
[31]Lorenz WW,Sun F,Liang C,Kolychev D,Wang H,Zhao X,Cordonnier-Pratt MM,Pratt LH,Dean JF .Water stress-responsive genes in loblolly pine (Pinus taeda) roots identified by analyses of expressed sequence tag libraries.[J].Tree Physiol,(2006),26:1-16
[32]Magbanua ZV,Ozkan S,Bartlett BD,Chouvarine P,Saski CA,Liston A,Cronn RC,Nelson CD,Peterson DG .Adventures in the enormous: a 1.8 million clone BAC library for the 21.7 Gb genome of loblolly pine. [J].PLoS One,(2011),6:e16214.:-
[33]Miller JR,Koren S,Sutton G.Assembly algorithms for next-generation sequencing data[J].Genomics,2010,95:315-327
[34]Morse AM,Peterson DG,Islam-Faridi MN,Smith KE,Magbanua Z,Garcia SA,Kubisiak TL,Amerson HV,Carloson JE,Nelson CD,Davis JM .Evolution of genome size and complexity in Pinus. [J].PLoS One,(2009),4:e4332.:-
[35]Müller T,Ensminger I,Schmid KJ .A catalogue of putative unique transcripts from Douglas-fir (Pseudotsuga menziesii) based on 454 transcriptome sequencing of genetically diverse,drought stressed seedlings. [J].BMC Genomics,(2012),13:673.:-
[36]Murray BG,Leitch IJ,Bennett MD .Gymnosperm DNA Cvalues database.[J].,(2004),:-
[37]Neale DB.Genomics to tree breeding and forest health[J].Curr. Opin. Genet. Dev,2007,17:539-544
[38]Ng SB,Turner EH,Robertson PD,Flygare SD,Bigham AW,Lee C,Shaffer T,Wong M,Bhattacharjee A,Eichler EE,Bamshad M,Nickerson DA,Shendure J.Targeted capture and massively parallel sequencing of 12 human exomes[J].Nature,2009,461:272-276
[39]Parchman TL,Geist KS,Grahnen JA,Benkman CW,Buerkle CA .Transcriptome sequencing in an ecologically important tree species: assembly,annotation,and marker discovery. [J].BMC Genomics,(2010),11,180.:-
[40]Pavy N,Paule C,Parsons L,Crow JA,Morency MJ,Cooke J,Johnson JE,Noumen E,Guillet-Claude C,Butterfield Y,Barber S,Yang G,Liu J,Stott J,Kirkpatrick R,Siddiqui A,Holt R,Marra M,Seguin A,Retzel E,Bousquet J,MacKay J .Generation,annotation,analysis and database integration of 16,500 white spruce EST clusters. [J].BMC Genomics,(2005),6,144.:-
[41]Pavy N,Pelgas B,Laroche J,Rigault P,Isabel N,Bouquet J .A spruce gene map infers ancient plant genome reshuffling and subsequent slow evolution in the gymnosperm lineage leading to extant conifers. [J].BMC Biology,(2012),10:84.:-
[42]Peterson DG,Schulze SR,Sciara EB,Lee SA,Bowers JE,Nagel A,Jiang N,Tibbitts DC,Wessler SR,Paterson AH.Integration of Cot analysis,DNA cloning,and high-throughput sequencing facilitates genome characterization and gene discovery[J].Genome Res,2002,12:795-807
[43]Philippe R,Choulet F,Paux E,van Oeveren J,Tang J,Wittenberg AH,Janssen A,van Eijk MJ,Stormo K,Alberti A,Wincker P,Akhunov E,van der Vossen E,Feuillet C .Whole genome profiling provides a robust framework for physical mapping and sequencing in the highly complex and repetitive wheat genome. [J].BMC Genomics,(2012),13:47:-
[44]Ralph Sg,Chun HJ,Kolosova N,Cooper D,Oddy C,Ritland CE,Kirkpatrick R,Moore R,Barber S,Holt RA,Jones SJM,Marra MA,Douglas CJ,Ritland K,Bohlmann J .A conifer genomics resource of 200 000 spruce (Picea spp.) ESTs and 6,464 high-quality,sequence-finished full-length cDNAs for Sitka spruce (Picea sitchensis). [J].BMC Genomics,(2008),9,484.:-
[45]Rigault P,Boyle B,Lepage P,Cooke JEK,Bousquet J,MacKay JJ .A white spruce gene catalog for conifer genome analyses. [J].Plant Physiol.,(2011),157:14-28
[46]Rudd S .Expressed sequence tags: alternative or complement to whole genome sequences? [J].Trends in Plant Science,(2003),8:321-329
[47]Sarri V,Ceccarelli M,Cionini PG .Quantitative evolution of transposable and satellite DNA sequences in Picea species. [J].Genome,(2011),54:431-435
[48]Schatz M .De novo assembly of complex genomes using 3rd generation sequencing.[J].Plant and Animal Genome XX Conference,San Diego,CA.,(2012),:-
[49]Yeaman S,Hodgins K,Nurkowski K,Rieseberg L,Aitken SN .The genomics of adaptation to climate: de novo assembly and gene expression analysis of Interior Spruce and Lodgepole pine.[J].Plant and Animal Genome XXI Conference,San Diego,CA.,(2013),:-
[50]Zonneveld BJM .Conifer genome sizes of 172 species,covering 64 out of the 67 genera,range from 8 to 72 picogram.[J].Nordic J Bot,(2012),30:490-502
Outlines

/

674-3466/bottom_en.htm"-->