TECHNIQUES AND METHODS

Callus Induction and Plant Regeneration of Cerasus serrulata var. lannesiana cv. ‘Grandiflora’

Expand
  • College of Forestry, Guizhou University, Guiyang 550025, China

Received date: 2020-12-19

  Accepted date: 2021-05-07

  Online published: 2021-05-07

Abstract

In order to establish the regeneration system of Cerasus serrulata var. lannesiana cv. ‘Grandiflora’, the effects of different explants and plant hormone combinations on callus induction, adventitious bud differentiation, proliferation and rooting were studied using perennial mother plant leaflets, annual grafted seedling leaflets, axillary bud induction leaflets and proliferative first-generation leaflets as explants. The results showed that callus could be induced from all four explants, and adventitious buds could be derived from all explants except the leaflets of perennial mother plants. The higher the degree of explants’ juvenility, the greater the success of subsequent culture, with the best explants were the proliferative first generation leaflets. The best medium for callus induction was MS+0.5 mg·L-1 6-BA+1.0 mg·L-1 2,4-D, and the induction rate was 96.22%. The optimal medium for differentiation was MS+1.0 mg·L-1 6-BA+0.1 mg·L-1 2,4-D+0.1 mg·L-1 TDZ, and the differentiation rate was 78.14%. The optimal medium for proliferation was MS+1.0 mg·L-1 6-BA, and the proliferation coefficient reached 7.85. The optimal medium for rooting was 1/2MS without any hormone, and the regenerated plants with 100% rooting rate were obtained. The regenerated plants from different explants grew very differently, and those induced from first generation of proliferative leaflets had the best growth.

Cite this article

Qian Luo, Yansha Zhang, Jing Ou . Callus Induction and Plant Regeneration of Cerasus serrulata var. lannesiana cv. ‘Grandiflora’[J]. Chinese Bulletin of Botany, 2021 , 56(4) : 451 -461 . DOI: 10.11983/CBB20205

References

[1] 陈雪, 张金柱, 潘兵兵, 桑成瑾, 马雪, 杨涛, 车代弟 (2011). 月季愈伤组织的诱导及植株再生. 植物学报 46, 569-574.
[2] 房洪舟, 鲁敏, 安华明 (2019). 刺梨叶片愈伤组织培养体系建立及其主要活性物质分析. 植物生理学报 55, 1147-1155.
[3] 郭希梅, 丛日晨, 张常青, 古润泽, 高俊平 (2011). 古油松衰弱衰老诊断的生理指标. 林业科学 47(4), 43-48.
[4] 和凤美, 李璇, 邵琬珊, 朱永平, 杨晓红 (2010). 冬樱花愈伤组织诱导和抑制褐化初探. 中国农学通报 26(12), 130-134.
[5] 黄守印, 池井存, 苏淑欣, 尚文艳, 任艳平 (2003). 雾灵山地区野生樱花的组织培养与快速繁殖. 植物生理学通讯 (3), 228.
[6] 蒋冬月, 邹宜含, 柳新红, 程亚平, 王平, 沈鑫 (2019). 樱花粉红及黄绿色系品种苗期生长特性及适应性. 江西农业大学学报 41, 673-682.
[7] 雷巾茗 (2020). 樱花组培快繁与扦插繁殖研究. 硕士论文. 北京: 北京林业大学. pp. 1-92.
[8] 李水根, 李秀芬, 殷丽青, 高晨, 朱建军 (2020). 喜马拉雅樱花嫩茎离体快繁体系优化. 分子植物育种 18, 8217-8222.
[9] 李艳敏, 孟月娥, 张玉, 赵秀山, 王利民, 王慧娟 (2012). 新优彩叶植物红叶樱花外植体采集及离体培养技术研究. 河南农业科学 41(9), 127-130, 142.
[10] 李艳敏, 孟月娥, 赵秀山, 王慧娟, 张强, 王利民 (2008). ‘红叶樱花’的组织培养和快速繁殖. 植物生理学通讯 44, 1163-1164.
[11] 刘莉莉, 卢淑波, 徐佳萍, 张庆田, 李昌禹 (2015). 以黄花乌头发根为外植体的再生培养体系建立. 植物学报 50, 623-627.
[12] 刘晓莉 (2012). 14个樱花品种观赏性状综合评价和樱花园林应用研究. 硕士论文. 杭州: 浙江农林大学. pp. 1-89.
[13] 吕月良, 陈璋, 施季森, 黄宇翔, 刘金燕, 谢建丽 (2006). 福建山樱花不定芽诱导和植株再生规模化繁殖试验. 南京林业大学学报(自然科学版) (3), 105-108.
[14] 任如意, 薛巨坤, 国会艳, 魏继承 (2017). 北玄参毛状根诱导及其植株再生. 植物学报 52, 783-787.
[15] 史港影, 南程慧, 伊贤贵, 张开文, 王贤荣 (2014). 雪落樱再生体系的建立. 南京林业大学学报(自然科学版) 38, 20-24.
[16] 宋斯妤 (2018). 迎春樱和华中樱优良品系组培快繁技术的研究. 硕士论文. 杭州: 浙江农林大学. pp. 1-62.
[17] 徐晨捷, 欧静 (2020). 染井吉野樱的茎段培养与胚培养比较. 北方园艺 (23), 65-71.
[18] 闫国华, 周宇, 张晓明, 张开春 (2002). 植物离体培养中的顽拗现象及其生理和遗传基础. 植物生理学通讯 38, 481-486.
[19] 燕丽萍, 李丽, 刘翠兰, 吴德军, 王因花, 任飞, 赵梁军 (2016). 绒毛白蜡体胚诱导和植株再生. 植物学报 51, 807-816.
[20] 杨小燕, 欧静, 张凤泉, 翁钰舟, 于瀚, 曹时波 (2019). 贵阳市樱花资源及其园林应用研究. 山地农业生物学报 38(6), 14-20.
[21] 于波, 黄丽丽, 朱玉, 朱根发, 孙映波 (2020). 朱顶红幼嫩花梗胚性愈伤组织诱导和高效植株再生. 园艺学报 47, 907-915.
[22] 张灵灵, 蒋细旺 (2015). 2个日本晚樱品种组织培养和快繁技术研究. 西南林业大学学报 35(4), 27-32.
[23] 张旭红, 王頔, 梁振旭, 孙美玉, 张金政, 石雷 (2018). 欧洲百合愈伤组织诱导及植株再生体系的建立. 植物学报 53, 840-847.
[24] 朱继军, 奉树成, 陈必胜 (2015). 晚樱花品种的引种与筛选. 中国园艺文摘 31(5), 1-3, 24.
[25] 邹娜, 陈璋, 林思祖, 林庆良 (2013). 福建山樱花愈伤组织的诱导及植株再生. 核农学报 27, 1417-1423.
[26] Bartos PMC, Gomes HT, do Amaral LIV, Teixeira JB, Scherwinski-Pereira JE (2018). Biochemical events during somatic embryogenesis in Coffea arabica L. 3 Biotech 8, 209.
[27] Ben Mahmoud K, Jedidi E, Delporte F, Muhovski Y, Jemmali A, Druart P (2017). Molecular investigations of the somatic embryogenesis recalcitrance in the cherry ( Prunus cerasus L.) rootstock CAB 6P. Turk J Biol 41, 158-165.
[28] Bernula D, Benkő P, Kaszler N, Domonkos I, Szőllősi R, Ferenc G, Ayaydin F, Fehér A, Gémes K (2020). Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots. Plant Cell Tissue Organ Cult 140, 327-339.
[29] Chen BH, Li JM, Zhang J, Wu ZX, Fan HH, Li QZ (2016). Optimizing the rapid technique for propagation of Cerasus campanulata by tissue culture. Pak J Bot 48, 305-309.
[30] Correia S, Lopes ML, Canhoto JM (2011). Somatic embryogenesis induction system for cloning an adult Cyphomandra betacea (Cav.) Sendt. (tamarillo). Trees 25, 1009-1020.
[31] Díaz-Sala C (2019). Molecular dissection of the regenerative capacity of forest tree species: special focus on conifers. Front Plant Sci 9, 1943.
[32] Hu RY, Sun YH, Wu B, Duan HJ, Zheng HQ, Hu DL, Lin HZ, Tong ZK, Xu JL, Li Y (2017). Somatic embryogenesis of immature Cunninghamia lanceolata (Lamb.) hook zygotic embryos. Sci Rep 7, 56.
[33] Martínez MT, San José MC, Vieitez AM, Cernadas MJ, Ballester A, Corredoira E (2017). Propagation of mature Quercus ilex L. (holm oak) trees by somatic embryogenesis. Plant Cell Tissue Organ Cult 131, 321-333.
[34] McCown BH (2000). Special symposium: in vitro plant recalcitrance recalcitrance of woody and herbaceous perennial plants: dealing with genetic predeterminism. In Vitro Cell Dev Biol Plant 36, 149-154.
[35] Ming NJ, Mostafiz SB, Johon NS, Zulkifli NSA, Wagiran A (2019). Combination of plant growth regulators, maltose, and partial desiccation treatment enhance somatic embryogenesis in selected Malaysian rice cultivar. Plants 8, 144.
[36] Singh R, Rai MK, Kumari N (2015). Somatic embryogenesis and plant regeneration in Sapindus mukorossi gaertn. from leaf-derived callus induced with 6-benzylaminopurine. Appl Biochem Biotechnol 177, 498-510.
[37] Wu GY, Wei XL, Wang X, Wei Y (2020). Induction of somatic embryogenesis in different explants from Ormosia henryi Prain. Plant Cell Tissue Organ Cult 142, 229-240.
[38] Wu H, Chen BJ, Fiers M, Wróbel-Marek J, Kodde J, Groot SPC, Angenent G, Feng H, Bentsink L, Boutilier K (2019). Seed maturation and post-harvest ripening negatively affect Arabidopsis somatic embryogenesis. Plant Cell Tissue Organ Cult 139, 17-27.
Outlines

/