REVIEW BY EDITOR-IN-CHIEF

Achievements and Advances in the Plant Sciences Field in China in 2020

Expand
  • 1School of Life Sciences, Peking University, Beijing 100871, China
    2Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
    3Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    4College of Biological Sciences, China Agricultural University, Beijing 100094, China
    5Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
    6College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
    7College of Life Sciences, South China Normal University, Guangzhou 510631, China
    8The Chinese University of Hong Kong, Shatian, China

Online published: 2021-04-28

Abstract

In 2020, the numbers of original research articles published by Chinese plant scientists in international multidisciplinary journals and mainstream plant science journals increased significantly compared with that in 2019, and important advances have been made in the fields of plant development, stress tolerance, crop biology, genomic phylogenetics and evolution. Among them, “Cloning, functional characterization and application in wheat breeding of the Fhb7 resistant gene to Fusarium head blight”, and “A new mechanism to improve the nitrogen-utilization efficiency in crops” were selected as two of the “Top Ten Advances in Life Sciences in China” in 2020. Here we summarize the achievements of plant science research in China in 2020, and briefly introduce 30 representative important research advances, so as to help readers understand the developmental trend of plant sciences in China, and conduct their future research to meet the national needs.

Cite this article

Hongya Gu, Jianru Zuo, Xiaoquan Qi, Shuhua Yang, Zhiduan Chen, Qian Qian, Rongcheng Lin, Lei Wang, Langtao Xiao, Xiaojing Wang, Fan Chen, Liwen Jiang, Yongfei Bai, Kang Chong, Tai Wang . Achievements and Advances in the Plant Sciences Field in China in 2020[J]. Chinese Bulletin of Botany, 2021 , 56(2) : 119 -133 . DOI: 10.11983/CBB21071

References

[1] 杜斐, 焦雨铃 (2020). WUSCHEL介导的固有免疫: 植物干细胞抵御病毒侵害的新机制. 植物学报 55,537-540.
[2] 韩美玲, 谭茹姣, 晁代印 (2020). “绿色革命”新进展: 赤霉素与氮营养双重调控的表观修饰助力水稻高产高效育种. 植物学报 55,5-8.
[3] 武亮, 戚益军 (2020). 小RNA, 大本领: 22 nt siRNAs在植物适应逆境中的重要作用. 植物学报 55,270-273.
[4] 姚瑞枫, 谢道昕 (2020). 独脚金内酯信号途径的新发现——抑制子也是转录因子. 植物学报 55,397-402.
[5] 周俭民 (2020). 小麦抗赤霉病利器——他山之石. 植物学报 55,123-125.
[6] 祝光涛, 黄三文 (2020). 360度群体遗传变异扫描——大豆泛基因组研究. 植物学报 55,403-406.
[7] Al-Babili S, Bouwmeester HJ (2015). Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66,161-186.
[8] Albert VA, Barbazuk WB, dePamphilis CW, Der JP, Leebens-Mack J, Ma H, Palmer JD, Rounsley S, Sankoff D, Schuster SC, Soltis DE, Soltis PS, Wessler SR, Wing RA, Albert VA, Ammiraju JSS, Barbazuk WB, Chamala S, Chanderbali AS, DePamphilis CW, Der JP, Determann R, Leebens-Mack J, Ma H, Ralph P, Rounsley S, Schuster SC, Soltis DE, Soltis PS, Talag J, Tomsho L, Walts B, Wanke S, Wing RA, Albert VA, Barbazuk WB, Chamala S, Chanderbali AS, Chang TH, Determann R, Lan TY, Soltis DE, Soltis PS, Arikit S, Axtell MJ, Ayyampalayam S, Barbazuk WB, Burnette JM, Chamala S, De Paoli E, Depamphilis CW, Der JP, Estill JC, Farrell NP, Harkess A, Jiao YN, Leebens-Mack J, Liu K, Mei WB, Meyers BC, Shahid S, Wafula E, Walts B, Wessler SR, Zhai JX, Zhang XY, Albert VA, Carretero-Paulet L, Depamphilis CW, Der JP, Jiao YN, Leebens-Mack J, Lyons E, Sankoff D, Tang HB, Wafula E, Zheng CF, Albert VA, Altman NS, Barbazuk WB, Carretero-Paulet L, Depamphilis CW, Der JP, Estill JC, Jiao YN, Leebens-Mack J, Liu K, Mei WB, Wafula E, Altman NS, Arikit S, Axtell MJ, Chamala S, Chanderbali AS, Chen F, Chen JQ, Chiang V, De Paoli E, dePamphilis CW, Der JP, Determann R, Fogliani B, Guo CC, Harholt J, Harkess A, Job C, Job D, Kim S, Kong HZ, Leebens-Mack J, Li GL, Li L, Liu J, Ma H, Meyers BC, Park J, Qi XS, Rajjou L, Burtet- Sarramegna V, Sederoff R, Shahid S, Soltis DE, Soltis PS, Sun YH, Ulvskov P, Villegente M, Xue JY, Yeh TF, Yu XX, Zhai JX, Acosta JJ, Albert VA, Barbazuk WB, Bruenn RA, Chamala S, de Kochko A, de Pamphilis CW, Der JP, Herrera-Estrella LR, Ibarra-Laclette E, Kirst M, Leebens-Mack J, Pissis SP, Poncet V, Schuster SC, Soltis DE, Soltis PS, Tomsho L (2013). The Amborella genome and the evolution of flowering plants. Science 342,1241089.
[9] Anand P, Stamler JS (2012). Enzymatic mechanisms regulating protein S-nitrosylation: implications in health and disease. J Mol Med (Berl) 90,233-244.
[10] Chan KX, Phua SY, Crisp P, McQuinn R, Pogson BJ (2016). Learning the languages of the chloroplast: retrograde signaling and beyond. Annu Rev Plant Biol 67,25-53.
[11] Chen JJ, Ding JH, Ouyang YD, Du HY, Yang JY, Cheng K, Zhao J, Qiu SQ, Zhang XL, Yao JL, Liu KD, Wang L, Xu CG, Li XH, Xue YB, Xia M, Ji Q, Lu JF, Xu ML, Zhang QF (2008). A triallelic system of S5 is a major regulator of the reproductive barrier and compatibility of indica- japonica hybrids in rice. Proc Natl Acad Sci USA 105,11436-11441.
[12] Chen JH, Wu HJ, Xu CH, Liu XC, Huang ZH, Chang SH, Wang WD, Han GY, Kuang TY, Shen JR, Zhang X (2020a). Architecture of the photosynthetic complex from a green sulfur bacterium. Science 370,eabb6350.
[13] Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2020b). Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62,25-54.
[14] Chen LC, Wu R, Feng J, Feng TP, Wang C, Hu JL, Zhan N, Li YS, Ma XH, Ren B, Zhang J, Song CP, Li JY, Zhou JM, Zuo JR (2020c). Transnitrosylation mediated by the non-canonical catalase ROG1 regulates nitric oxide signaling in plants. Dev Cell 53,444-457.
[15] Cheng SF, Xian WF, Fu Y, Marin B, Keller J, Wu T, Sun WJ, Li XL, Xu Y, Zhang Y, Wittek S, Reder T, Günther G, Gontcharov A, Wang SB, Li LZ, Liu X, Wang J, Yang HM, Xu X, Delaux PM, Melkonian B, Wong GKS, Melkonian M (2019). Genomes of subaerial Zygnematophyceae provide insights into land plant evolution. Cell 179,1057-1067.
[16] Diao XM, Schnable J, Bennetzen JL, Li JY (2014). Initiation of setaria as a model plant. Front Agr Sci Eng 1,16- 20.
[17] Ding WN, Ree RH, Spicer RA, Xing YW (2020). Ancient orogenic and monsoon-driven assembly of the world's richest temperate alpine flora. Science 369,578-581.
[18] Evenson RE, Gollin D (2003). Assessing the impact of the green revolution, 1960 to 2000. Science 300,758-762.
[19] Feng J, Chen LC, Zuo JR (2019). Protein S-nitrosylation in plants: current progresses and challenges. J Integr Plant Biol 61,1206-1223.
[20] Hauska G, Schoedl T, Remigy H, Tsiotis G (2001). The reaction center of green sulfur bacteria. Biochim Biophys Acta Bioenerg 1507,260-277.
[21] Huang G, WU ZG, Percy RG, Bai MZ, Li Y, Frelichowski JE, Hu J, Wang K, Yu JZ, Zhu YX (2020). Genome seq- uence of Gossypium herbaceum and genome updates of Gossypium arboreum and Gossypium hirsutum provide insights into cotton A-genome evolution. Nat Genet 52,516-524.
[22] Jiang L, Liu X, Xiong GS, Liu HH, Chen FL, Wang L, Meng XB, Liu GF, Yu H, Yuan YD, Yi W, Zhao LH, Ma HL, He YZ, Wu ZS, Melcher K, Qian Q, Xu HE, Wang YH, Li JY (2013). DWARF 53 acts as a repressor of strigolactone signaling in rice. Nature 504,401-405.
[23] Jiao YP, Zhao HN, Ren LH, Song WB, Zeng B, Guo JJ, Wang BB, Liu ZP, Chen J, Li W, Zhang M, Xie SJ, Lai JS (2012). Genome-wide genetic changes during modern breeding of maize. Nat Genet 44,812-815.
[24] Jiao YL, Lau OS, Deng XW (2007). Light-regulated transcriptional networks in higher plants. Nat Rev Genet 8,217- 230.
[25] Jones JDG, Dangl JL (2006). The plant immune system. Nature 444,323-329.
[26] Khush GS (1999). Green revolution: preparing for the 21st century. Genome 42,646-655.
[27] Lee DW, Lee J, Hwang I (2017). Sorting of nuclear-encoded chloroplast membrane proteins. Curr Opin Plant Biol 40,1-7.
[28] Li FG, Fan GY, Wang KB, Sun FM, Yuan YL, Song GL, Li Q, Ma ZY, Lu CR, Zou CS, Chen WB, Liang XM, Shang HH, Liu WQ, Shi CC, Xiao GH, Gou CY, Ye WW, Xu X, Zhang XY, Wei HL, Li ZF, Zhang GY, Wang JY, Liu K, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu SX (2014). Genome sequence of the cultivated cotton Gossypium arboreum. Nat Genet 46, 567- 572.
[29] Li JF, Zhou HP, Zhang Y, Li Z, Yang YQ, Guo Y (2020). The GSK3-like kinase BIN2 is a molecular switch between the salt stress response and growth recovery in Arabidopsis thaliana. Dev Cell 55,367-380.
[30] Li S, Tian YH, Wu K, Ye YF, Yu JP, Zhang JQ, Liu Q, Hu MY, Li H, Tong YP, Harberd NP, Fu XD (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560,595-600.
[31] Liang T, Mei SL, Shi C, Yang Y, Peng Y, Ma LB, Wang F, Li X, Huang X, Yin YH, Liu HT (2018). UVR8 interacts with BES1 and BIM 1 to regulate transcription and photomorphogenesis in Arabidopsis. Dev Cell 44,512-523.
[32] Liu YC, Du HL, Li PC, Shen YT, Peng H, Liu SL, Zhou GA, Zhang HK, Liu Z, Shi M, Huang XH, Li Y, Zhang M, Wang Z, Zhu BG, Han B, Liang CZ, Tian ZX (2020). Pan-genome of wild and cultivated soybeans. Cell 182,162-176.
[33] Lu SJ, Dong LD, Fang C, Liu SL, Kong LP, Cheng Q, Chen LY, Su T, Nan HY, Zhang D, Zhang L, Wang ZJ, Yang YQ, Yu DY, Liu XL, Yang QY, Lin XY, Tang Y, Zhao XH, Yang XQ, Tian CG, Xie QG, Li X, Yuan XH, Tian ZX, Liu BH, Weller JL, Kong FJ (2020). Stepwise selection on homeologous PRR genes controlling flowe-ring and maturity during soybean domestication. Nat Genet 52,428-436.
[34] Ma SC, Lapin D, Liu L, Sun Y, Song W, Zhang XX, Logemann E, Yu DL, Wang J, Jirschitzka J, Han ZF, Schulze-Lefert P, Parker JE, Chai JJ (2020). Direct pathogen-induced assembly of an NLR immune receptor complex to form a holoenzyme. Science 370,eabe3069.
[35] Maekawa T, Kufer TA, Schulze-Lefert P (2011). NLR functions in plant and animal immune systems: so far and yet so close. Nat Immunol 12,817-826.
[36] Mayer KFX, Rogers J, Dole?el J, Pozniak C, Eversole K, Feuillet C, Gill B, Friebe B, Lukaszewski AJ, Sourdille P, Endo TR, Dolezel J, Kubaláková M, Cíhalíková J, Dubská Z, Vrána J, Sperková R, Simková H, Febrer M, Clissold L, McLay K, Singh K, Chhuneja P, Singh NK, Khurana J, Akhunov E, Choulet F, Alberti A, Barbe V, Wincker P, Kanamori H, Kobayashi F, Itoh T, Matsumoto T, Sakai H, Tanaka T, Wu JZ, Ogihara Y, Handa H, Maclachlan PR, Sharpe A, Klassen D, Edwards D, Batley J, Olsen OA, Sandve SR, Lien S, Steuernagel B, Wulff B, Caccamo M, Ayling S, Ramirez-Gonzalez RH, Clavijo BJ, Wright J, Pfeifer M, Spannagl M, Martis MM, Mascher M, Chapman J, Poland JA, Scholz U, Barry K, Waugh R, Rokhsar DS, Muehlbauer GJ, Stein N, Gundlach H, Zytnicki M, Jamilloux V, Quesneville H, Wicker T, Faccioli P, Colaiacovo M, Stanca AM, Budak H, Cattivelli L, Glover N, Pingault L, Paux E, Appels R, Bellgard M, Chapman B, Nussbaumer T, Bader KC, Rimbert H, Wang SC, Knox R, Kilian A, Alaux M, Alfama F, Couderc L, Guilhot N, Viseux C, Loaec M, Keller B, Praud S (2014). A chromosome-based draft sequence of the hexaploid bread wheat ( Triticum aestivum) genome. Science 345,1251788.
[37] Medina-Puche L, Tan H, Dogra V, Wu MS, Rosas-Diaz T, Wang LP, Ding X, Zhang D, Fu X, Kim C, Lozano- Duran R (2020). A defense pathway linking plasma membrane and chloroplasts and Coopted by pathogens. Cell 182,1109-1124.
[38] Mi JM, Li GW, Xu CH, Yang JY, Yu HH, Wang GW, Li XH, Xiao JH, Song HZ, Zhang QF, Ouyang YD (2020). Artificial selection in domestication and breeding prevents speciation in rice. Mol Plant 13,650-657.
[39] Morel G, Martin C (1952). Cure of dahlias attacked by a virus disease. CR Hebd Seances Acad Sci 235,1324-1325.
[40] Nishiyama T, Sakayama H, de Vries J, Buschmann H, Saint-Marcoux D, Ullrich KK, Haas FB, Vanderstraeten L, Becker D, Lang D, Vosolsobě S, Rombauts S, Wilhelmsson PKI, Janitza P, Kern R, Heyl A, Rumpler F, Villalobos LIAC, Clay JM, Skokan R, Toyoda A, Suzuki Y, Kagoshima H, Schijlen E, Tajeshwar N, Catarino B, Hetherington AJ, Saltykova A, Bonnot C, Breuninger H, Symeonidi A, Radhakrishnan GV, Van Nieuwerburgh F, Deforce D, Chang C, Karol KG, Hedrich R, Ulvskov P, Gl?ckner G, Delwiche CF, Petrá?ek J, Van de Peer Y, Friml J, Beilby M, Dolan L, Kohara Y, Sugano S, Fujiyama A, Delaux PM, Quint M, Thei?en G, Hagemann M, Harholt J, Dunand C, Zachgo S, Langdale J, Maumus F, Van Der Straeten D, Gould SB, Rensing SA (2018). The Chara genome: secondary complexity and implications for plant terrestrialization. Cell 174,448-464.
[41] Ouyang M, Li XY, Zhang J, Feng PQ, Pu H, Kong LX, Bai ZC, Rong LW, Xu XM, Chi W, Wang Q, Chen F, Lu CM, Shen JR, Zhang LX (2020). Liquid-liquid phase transition drives intra-chloroplast cargo sorting. Cell 180,1144-1159.
[42] Ouyang YD, Li GW, Mi JM, Xu CH, Du HY, Zhang CJ, Xie WB, Li XH, Xiao JH, Song HZ, Zhang QF (2016). Origination and establishment of a trigenic reproductive isolation system in rice. Mol Plant 9,1542-1545.
[43] Pan WB, Lin BY, Yang XY, Liu LJ, Xia R, Li JG, Wu YR, Xie Q (2020). The UBC27-AIRP3 ubiquitination complex modulates ABA signaling by promoting the degradation of ABI1 in Arabidopsis. Proc Natl Acad Sci USA 117, 27694- 27702.
[44] Pham VN, Kathare PK, Huq E (2018). Phytochromes and phytochrome interacting factors. Plant Physiol 176, 1025- 1038.
[45] Potato Genome Sequencing Consortium (2011). Genome sequence and analysis of the tuber crop potato. Nature 475,189-195.
[46] Qi LJ, Liu S, Li C, Fu JY, Jing YJ, Cheng JK, Li H, Zhang D, Wang XJ, Dong XJ, Han R, Li BS, Zhang Y, Li Z, Terzaghi W, Song CP, Lin RC, Gong ZZ, Li JG (2020). PHYTOCHROME-INTERACTING FACTORS interact with the ABA receptors PYL8 and PYL9 to orchestrate ABA signaling in darkness. Mol Plant 13,414-430.
[47] Rosas-Diaz T, Zhang D, Fan PF, Wang LP, Ding X, Jiang YL, Jimenez-Gongora T, Medina-Puche L, Zhao XY, Feng ZY, Zhang GP, Liu XK, Bejarano ER, Tan L, Zhang H, Zhu JK, Xing WM, Faulkner C, Nagawa S, Lozano-Duran R (2018). A virus-targeted plant receptor-like kinase promotes cell-to-cell spread of RNAi. Proc Natl Acad Sci USA 115,1388-1393.
[48] Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010). Genome sequence of the palaeopolyploid soybean. Nature 463,178-183.
[49] Seth D, Hess DT, Hausladen A, Wang LW, Wang YJ, Stamler JS (2018). A multiplex enzymatic machinery for cellular protein S-nitrosylation. Mol Cell 69,451-464.
[50] Shen YT, Liu J, Geng HY, Zhang JX, Liu YC, Zhang HK, Xing SL, Du JC, Ma SS, Tian ZX (2018). De novo assembly of a Chinese soybean genome. Sci China Life Sci 61,871-884.
[51] Singh RP, Singh PK, Rutkoski J, Hodson DP, He XY, J?rgensen LN, Hovm?ller MS, Huerta-Espino J (2016). Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54,303-322.
[52] Su YH, Zhou C, Li YJ, Yu Y, Tang LP, Zhang WJ, Yao WJ, Huang RF, Laux T, Zhang XS (2020). Integration of pluripotency pathways regulates stem cell maintenance in the Arabidopsis shoot meristem. Proc Natl Acad Sci USA 117,22561-22571.
[53] Wang KB, Wang ZW, Li FG, Ye WW, Wang JY, Song GL, Yue Z, Cong L, Shang HH, Zhu SL, Zou CS, Li Q, Yuan YL, Lu CR, Wei HL, Gou CY, Zheng ZQ, Yin Y, Zhang XY, Liu K, Wang B, Song C, Shi N, Kohel RJ, Percy RG, Yu JZ, Zhu YX, Wang J, Yu SX (2012). The draft genome of a diploid cotton Gossypium raimondii. Nat Genet 44, 1098-1103.
[54] Wang JZ, Hu MJ, Wang J, Qi JF, Han ZF, Wang GX, Qi YJ, Wang HW, Zhou JM, Chai JJ (2019a). Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364,eaav5870.
[55] Wang JZ, Wang J, Hu MJ, Wu S, Qi JF, Wang GX, Han ZF, Qi YJ, Gao N, Wang HW, Zhou JM, Chai JJ (2019b). Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364,eaav5868.
[56] Wang BB, Lin ZC, Li X, Zhao YP, Zhao BB, Wu GX, Ma XJ, Wang H, Xie YR, Li QQ, Song GS, Kong DX, Zheng ZG, Wei HB, Shen RX, Wu H, Chen CX, Meng ZD, Wang TY, Li Y, Li XH, Chen YH, Lai JS, Hufford MB, Ross-Ibarra J, He H, Wang HY (2020a). Genome-wide selection and genetic improvement during modern maize breeding. Nat Genet 52,565- 571.
[57] Wang HW, Sun SL, Ge WY, Zhao LF, Hou BQ, Wang K, Lyu ZF, Chen LY, Xu SS, Guo J, Li M, Su PS, Li XF, Wang GP, Bo CY, Fang XJ, Zhuang WW, Cheng XX, Wu JW, Dong LH, Chen WY, Li W, Xiao GL, Zhao JX, Hao YC, Xu Y, Gao Y, Liu WJ, Liu YH, Yin HY, Li JZ, Li X, Zhao Y, Wang XQ, Ni F, Ma X, Li AF, Xu SS, Bai GH, Nevo E, Gao CX, Ohm H, Kong LR (2020b). Horizontal gene transfer of Fhb7from fungus underlies Fusarium head blight resistance in wheat. Science 368,eaba5435.
[58] Wang L, Wang B, Yu H, Guo HY, Lin T, Kou LQ, Wang AQ, Shao N, Ma HY, Xiong GS, Li XQ, Yang J, Chu JF, Li JY (2020c). Transcriptional regulation of strigolactone signaling in Arabidopsis. Nature 583,277-281.
[59] Wang SB, Li LZ, Li HY, Sahu SK, Wang HL, Xu Y, Xian WF, Song B, Liang HP, Cheng SF, Chang Y, Song Y, Cebi Z, Wittek S, Reder T, Peterson M, Yang HM, Wang J, Melkonian B, van de Peer Y, Xu X, Wong GKS, Melkonian M, Liu H, Liu X (2020d). Genomes of early-diverging streptophyte algae shed light on plant terrestrialization. Nat Plants 6,95-106.
[60] Wang G, Zhang XT, Herre EA, McKey D, Machado CA, Yu WB, Cannon CH, Arnold ML, Pereira RAS, Ming R, Liu YF, Wang YB, Ma DN, Chen J (2021). Genomic evidence of prevalent hybridization throughout the evolutionary history of the fig-wasp pollination mutualism. Nat Commun 12,718.
[61] Wu HH, Li BS, Iwakawa HO, Pan YJ, Tang XL, Ling-hu QY, Liu YL, Sheng SX, Feng L, Zhang H, Zhang XY, Tang ZH, Xia XL, Zhai JX, Guo HW (2020a). Plant 22 nt siRNAs mediate translational repression and stress adaptation. Nature 581,89-93.
[62] Wu HJ, Qu XY, Dong ZC, Luo LJ, Shao C, Forner J, Lohmann JU, Su M, Xu MC, Liu XB, Zhu L, Zeng J, Liu SM, Tian ZX, Zhao Z (2020b). WUSCHEL triggers innate antiviral immunity in plant stem cells. Science 370,227- 231.
[63] Wu K, Wang SS, Song WZ, Zhang JQ, Wang Y, Liu Q, Yu JP, Ye YF, Li S, Chen JF, Zhao Y, Wang J, Wu XK, Wang MY, Zhang YJ, Liu BM, Wu YJ, Harberd NP, Fu XD (2020c). Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367,eaaz2046.
[64] Xie YR, Liu Y, Ma MD, Zhou Q, Zhao YP, Zhao BB, Wang BB, Wei HB, Wang HY (2020). Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching. Nat Commun 11,1955.
[65] Xie YR, Liu Y, Wang H, Ma XJ, Wang BB, Wu GX, Wang HY (2017). Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nat Commun 8, 348.
[66] Yang JY, Zhao XB, Cheng K, Du HY, Ouyang YD, Chen JJ, Qiu SQ, Huang JY, Jiang YH, Jiang LW, Ding JH, Wang J, Xu CG, Li XH, Zhang QF (2012). A killer-protector system regulates both hybrid sterility and segregation distortion in rice. Science 337,1336-1340.
[67] Yang Y, Liang T, Zhang LB, Shao K, Gu XX, Shang RX, Shi N, Li X, Zhang P, Liu HT (2018). UVR8 interacts with WRKY 36 to regulate HY5 transcription and hypocotyl elongation in Arabidopsis. Nat Plants 4, 98-107.
[68] Yang YQ, Guo Y (2018). Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217,523-539.
[69] Yang Y, Zhang LB, Chen P, Liang T, Li X, Liu HT (2020a). UV-B photoreceptor UVR8 interacts with MYB73/MYB77 to regulate auxin responses and lateral root development. EMBO J 39,e101928.
[70] Yang YZ, Sun PC, Lv LK, Wang DL, Ru DF, Li Y, Ma T, Zhang L, Shen XX, Meng FB, Jiao BB, Shan LX, Liu M, Wang QF, Qin ZJ, Xi ZX, Wang XY, Davis CC, Liu JQ (2020b). Prickly waterlily and rigid hornwort genomes shed light on early angiosperm evolution. Nat Plants 6,215- 222.
[71] Yang ZR, Zhang HS, Li XK, Shen HM, Gao JH, Hou SY, Zhang B, Mayes S, Bennett M, Ma JX, Wu CY, Sui Y, Han YH, Wang XC (2020c). A mini foxtail millet with an Arabidopsis-like life cycle as a C 4 model system. Nat Plants 6,1167-1178.
[72] Yu FF, Wu YR, Xie Q (2016). Ubiquitin-proteasome system in ABA signaling: from perception to action. Mol Plant 9,21-33.
[73] Zhang XY, Zhu Y, Liu XD, Hong XY, Xu Y, Zhu P, Shen Y, Wu HH, Ji YS, Wen X, Zhang C, Zhao Q, Wang YC, Lu J, Guo HW (2015). Suppression of endogenous gene silencing by bidirectional cytoplasmic RNA decay in Arabidopsis. Science 348,120-123.
[74] Zhang J, Fu XX, Li RQ, Zhao X, Liu Y, Li MH, Zwaenepoel A, Ma H, Goffinet B, Guan YL, Xue JY, Liao YY, Wang QF, Wang QH, Wang JY, Zhang GQ, Wang ZW, Jia Y, Wang MZ, Dong SS, Yang JF, Jiao YN, Guo YL, Kong HZ, Lu AM, Yang HM, Zhang SZ, Van de Peer Y, Liu ZJ, Chen ZD (2020a). The hornwort genome and early land plant evolution. Nat Plants 6,107-118.
[75] Zhang LS, Chen F, Zhang XT, Li Z, Zhao YY, Lohaus R, Chang XJ, Dong W, Ho SYW, Liu X, Song AX, Chen JH, Guo WL, Wang ZJ, Zhuang YY, Wang HF, Chen XQ, Hu J, Liu YH, Qin Y, Wang K, Dong SS, Liu Y, Zhang SZ, Yu XX, Wu Q, Wang LS, Yan XQ, Jiao YN, Kong HZ, Zhou XF, Yu CW, Chen YC, Li F, Wang JH, Chen W, Chen XL, Jia QD, Zhang C, Jiang YF, Zhang WB, Liu GH, Fu JY, Chen F, Ma H, Van de Peer Y, Tang HB (2020b). The water lily genome and the early evolution of flowering plants. Nature 577,79-84.
[76] Zhang XT, Wang G, Zhang SC, Chen S, Wang YB, Wen P, Ma XK, Shi Y, Qi R, Yang Y, Liao ZY, Lin J, Lin JS, Xu XM, Chen XQ, Xu XD, Deng F, Zhao LH, Lee YL, Wang R, Chen XY, Lin YR, Zhang JS, Tang HB, Chen J, Ming R (2020c). Genomes of the banyan tree and pollinator wasp provide insights into fig-wasp coevolution. Cell 183,875-889.
[77] Zhou F, Lin QB, Zhu LH, Ren YL, Zhou KN, Shabek N, Wu FQ, Mao HB, Dong W, Gan L, Ma WW, Gao H, Chen J, Yang C, Wang D, Tan JJ, Zhang X, Guo XP, Wang JL, Jiang L, Liu X, Chen WQ, Chu JF, Yan CY, Ueno K, Ito S, Asami T, Cheng ZJ, Wang J, Lei CL, Zhai HQ, Wu CY, Wang HY, Zheng N, Wan JM (2013). D14-SCFD3-dependent degradation of D53 regulates strigolactone signaling. Nature 504,406-410.
[78] Zhou Q, Tang D, Huang W, Yang ZM, Zhang Y, Hamilton JP, Visser RGF, Bachem CWB, Buell CR, Zhang ZH, Zhang CZ, Huang SW (2020a). Haplotype-resolved genome analyses of a heterozygous diploid potato. Nat Genet 52,1018-1023.
[79] Zhou XY, Yu JJ, Spengler RN, Shen H, Zhao KL, Ge JY, Bao YG, Liu JC, Yang QJ, Chen GH, Jia PW, Li XQ (2020b). 5,200-year-old cereal grains from the eastern Altai Mountains redate the trans-eurasian crop exchange. Nat Plants 6,78-87.
[80] Zhou Y, Zhao XB, Li YW, Xu J, Bi AY, Kang LP, Xu DX, Chen HF, Wang Y, Wang YG, Liu SY, Jiao CZ, Lu HF, Wang J, Yin CB, Jiao YL, Lu F (2020c). Triticum population sequencing provides insights into wheat adaptation. Nat Genet 52,1412-1422.
Outlines

/