EXPERIMENTAL COMMUNICATIONS

Heterosis Analysis of the Fiber Quality in Gossypium hirsutum Germplasm Jizi139 with FBP7::iaaM

Expand
  • Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences/Key Laboratory of Biology and Genetic Improvement of Cotton in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs/Hebei Branch of National Cotton Improvement Center, Shijiazhuang 050051, China

Received date: 2020-11-26

  Accepted date: 2021-03-01

  Online published: 2021-03-01

Abstract

The improvement of cotton yield and fiber quality has become an important goal of cotton breeding, and the innovation of elite germplasm is the basis of variety improvement. The FBP7::iaaM could promote the cotton fiber initiation by regulating the content of IAA in ovule epidermis. Using the transgenic line of IF1-1 (FBP7::iaaM) as the parent, we have transferred the target gene to backbone parents and developed an excellent upland cotton germplasm Jizi139 by conventional cross breeding, and analyzed the heterosis of fiber quality traits of Jizi139 by crossing with four different types of upland cotton lines. Our results showed that FBP7::iaaM gene and the fine traits regulated by FBP7::iaaM can be transferred to breeding backbone parents with high breeding value. Jizi139 with FBP7::iaaM showed high lint percentage, high fiber quality and excellent comprehensive characteristics. Also, it was found that additive effect was the genetic basis of the fiber length, fiber strength and micronaire, which provided a theoretical basis for the selection and application of parents.

Cite this article

Baosheng Guo, Su’en Liu, Cunpeng Zhao, Zhaoxiao Wang, Kaihui Wang, Dan Li, Xu Liu, Haiying Du, Junyi Geng . Heterosis Analysis of the Fiber Quality in Gossypium hirsutum Germplasm Jizi139 with FBP7::iaaM[J]. Chinese Bulletin of Botany, 2021 , 56(2) : 166 -174 . DOI: 10.11983/CBB20191

References

[1] 阿曼古丽·买买提阿力, 拉扎提·努尔布拉提, 高丽丽, 张巨松, 田立文 (2017). 盐胁迫对海岛棉和陆地棉幼苗生长及生理特性的影响. 植物学报 52,465-473.
[2] 陈旭升, 狄佳春, 赵亮 (2015). 转 iaaM基因对陆地棉主要经济性状的相关效应分析. 中国棉花 42(6),17-19, 24.
[3] 丁晓艳, 赵娟, 钱山山, 阎星颖, 裴炎 (2018). 利用 FBP7: iaaM转基因材料同步改良短季棉品种晋棉11纤维产量和品质. 作物学报 44,1152-1158.
[4] 李慧琴, 于娅, 王鹏, 刘记, 胡伟, 鲁丽丽, 秦文强 (2019). 270份陆地棉种质资源农艺性状与品质性状的遗传多样性分析. 植物遗传资源学报 20,903-910.
[5] 刘存敬, 江振兴, 张建宏, 唐丽媛, 张素君, 田海燕, 李兴河, 师树新, 崔瑞敏, 张香云 (2016). 转 iaaM高衣分棉花种质IF1-1杂种优势分析及育种应用. 河北农业科学 20(3),70- 74.
[6] 刘宏伟, 李南南, 苗玉焕, 柳仕明, 聂以春, 朱龙付, 张献龙 (2016). 利用 FBP:iaaM改良华杂棉H318产量与纤维品质研究. 石河子大学学报(自然科学版) 34,133-140.
[7] 马宏秀, 王开勇, 张开祥, 孟春梅, 安梦洁 (2019). 棉粕对盐碱胁迫下棉花生理及生长补偿效应. 植物学报 54,208- 216.
[8] 毛玮, 曹跃芬 (2018). 棉纤维发育的遗传特性及相关基因的研究进展. 浙江农林大学学报 35,1155-1165.
[9] 聂新辉, 尤春源, 鲍健, 李晓方, 惠慧, 刘洪亮, 秦江鸿, 林忠旭 (2015). 基于关联分析的新陆早棉花品种农艺和纤维品质性状优异等位基因挖掘. 中国农业科学 48,2891- 2910.
[10] 潘玉欣, 马峙英, 方宣钧 (2005). 棉花纤维发育的遗传机制及分子标记. 河北农业大学学报 28(3),6-11.
[11] 唐淑荣, 魏守军, 郭瑞林, 韦京艳, 孟俊婷, 杨长琴 (2019). 不同熟性棉花品种纤维品质特征分析与评价. 中国生态农业学报(中英文) 27,1564-1577.
[12] 王芙蓉, 张军, 刘勤红, 张传云 (2001). 我国棉花种质创新进展与展望. 棉花学报 13,50-53.
[13] 王国宁, 张桂寅, 吴立强, 王省芬, 李志坤, 张艳, 吴金华, 柯会锋, 孟成生, 马峙英 (2014). 转 iaaM基因高衣分棉花新种质材料创制. 中国棉花 41(7),27-31.
[14] 王士杰, 赵红霞, 朱继杰, 和剑涵, 李妙, 王国印, 贾晓昀 (2019). IaaM基因对不同遗传背景棉花品种纤维品质及衣分的影响. 河北农业大学学报 42(2),36-40.
[15] 肖钦之 (2015). 利用转iaaM基因种质IF-11改良棉花纤维产量与品质的研究. 硕士论文. 杭州: 浙江大学. pp.11-28.
[16] 殷剑美, 武耀廷, 朱协飞, 张天真 (2003). 陆地棉产量与品质性状的主基因与多基因遗传分析. 棉花学报 15,67-72.
[17] 袁有禄, 魏晓文, 毛树春, 潘境涛, 方红曼, 吕慧颖, 邓向东, 葛毅强, 魏珣, 杨维才 (2018). 棉花育种行业创新与进展. 植物遗传资源学报 19,455-463.
[18] 袁有禄, 张天真, 郭旺珍, Yu J, Kohel RJ (2002). 棉花高品质纤维性状的主基因与多基因遗传分析. 遗传学报 29,827-834.
[19] 赵存鹏, 王兆晓, 王凯辉, 刘素恩, 耿军义, 郭宝生 (2017). 胞质雄性不育系冀2658A细胞质对陆地棉主要性状的影响. 植物学报 52,560-567.
[20] Fang L, Gong H, Hu Y, Liu CX, Zhou BL, Huang T, Wang YK, Chen SQ, Fang DD, Du XM, Chen H, Chen JD, Wang S, Wang Q, Wan Q, Liu BL, Pan MQ, Chang LJ, Wu HT, Mei GF, Xiang D, Li XH, Cai CP, Zhu XF, Chen ZJ, Han B, Chen XY, Guo WZ, Zhang TZ, Huang XH (2017a). Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol 18,33.
[21] Fang L, Wang Q, Hu Y, Jia YH, Chen JD, Liu BL, Zhang ZY, Guan XY, Chen SQ, Zhou BL, Mei GF, Sun JL, Pan ZE, He SP, Xiao SH, Shi WJ, Gong WF, Liu JG, Ma J, Cai CP, Zhu XF, Guo WZ, Du XM, Zhang TZ (2017b). Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49,1089-1098.
[22] Kim HJ, Triplett BA (2001). Cotton fiber growth in planta and in vitro. Models for plant cell elongation and cell wall biogenesis. Plant Physiol 127,1361-1366.
[23] Loguercio LL, Zhang JQ, Wilkins TA (1999). Differential regulation of six novel MYB-domain genes defines two distinct expression patterns in allotetraploid cotton ( Gossypium hirsutum L.). Mol Gen Genet 261,660-671.
[24] Paterson AH, Brubaker CL, Wendel JF (1993). A rapid method for extraction of cotton ( Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Rep 11,122-127.
[25] Sun ZW, Wang XF, Liu ZW, Gu QS, Zhang Y, Li ZK, Ke HF, Yang J, Wu JH, Wu LQ, Zhang GY, Zhang CY, Ma ZY (2017). Genome-wide association study discovered genetic variation and candidate genes of fibre quality traits in Gossypium hirsutum L. Plant Biotechnol J 15,982-996.
[26] Walford SA, Wu YR, Llewellyn DJ, Dennis ES (2012). Epidermal cell differentiation in cotton mediated by the homeodomain leucine zipper gene, GhHD-1. Plant J 71,464-478.
[27] Wan Q, Guan XY, Yang NN, Wu HT, Pan MQ, Liu BL, Fang L, Yang SP, Hu Y, Ye WX, Zhang H, Ma PY, Chen JD, Wang Q, Mei GF, Cai CP, Yang DL, Wang JW, Guo WZ, Zhang WH, Chen XY, Zhang TZ (2016). Small interfering RNAs from bidirectional transcripts of GhMML3_ A12 regulate cotton fiber development. New Phytol 210,1298-1310.
[28] Zhang M, Zheng XL, Song SQ, Zeng QW, Hou L, Li DM, Zhao J, Wei Y, Li XB, Luo M, Xiao YH, Luo XY, Zhang JF, Xiang CB, Pei Y (2011). Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality. Nat Biotechnol 29,453-458.
Outlines

/