A 360-degree Scanning of Population Genetic Variations—a Pan-genome Study of Soybean
Received date: 2020-05-26
Accepted date: 2020-06-07
Online published: 2020-06-17
Soybean (Glycine max) is an important oil and protein crop. The abundancy of genetic diversity within the species provides an essential resource for traits exploration and breeding improvement. However, one reference genome is inadequate for discovering all genetic diversity of a species. Pan-genome provides a new solution to overcome this limitation. Recently, Prof. Zhixi Tian’ Group and Prof. Chengzhi Liang’ Group from the Institute of Genetics and Develop- mental Biology, Chinese Academy of Sciences, selected 26 representative soybeans from 2 898 sequenced accessions. Together with three previously published genomes, they constructed a pan-genome and a graph-based genome of wild and cultivated soybean germplasm. The core, dispensable, and private genes as well as all the vast majority of genetic variations within this species were identified and characterized. These data comprehensively revealed allelic variations and gene fusion event of maturity gene E3, the haploid types of seed coat color gene I and their evolutionary relationship, and structural variations affecting gene expression and regional adaptation selection of ferric ion transporters. This study provide a new mode for crop genomics, and will facilitate genetic variations identification, traits exploration and germplasm innovation of soybean.
Key words: soybean; pan-genome; graph-based genome; genetic variation; agronomic traits
Guangtao Zhu,Sanwen Huang . A 360-degree Scanning of Population Genetic Variations—a Pan-genome Study of Soybean[J]. Chinese Bulletin of Botany, 2020 , 55(4) : 403 -406 . DOI: 10.11983/CBB20096
[1] | Carter TE Jr, Nelson R, Sneller CH, Cui Z (2004). Soybeans: Improvement, Production and Uses, 3rd edn. Madison: American Society of Agronomy. pp. 97. |
[2] | Dai W, Huang Y, Wu L, Yu J (2009). Relationships between soil organic matter content (SOM) and pH in topsoil of zonal soils in China. Acta Pedol Sin 46, 851-860. |
[3] | Gao L, Gonda I, Sun H, Ma Q, Bao K, Tieman DM, Burzynski-Chang EA, Fish TL, Stromberg KA, Sacks GL, Thannhauser TW, Foolad MR, Diez MJ, Blanca J, Canizares J, Xu Y, van der Knaap E, Huang S, Klee HJ, Giovannoni JJ, Fei Z (2019). The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat Genet 51, 1044-1051. |
[4] | Golicz AA, Batley J, Edwards D (2016). Towards plant pangenomics. Plant Biotechnol J 14, 1099-1105. |
[5] | Huang X, Kurata N, Wei X, Wang ZX, Wang A, Zhao Q, Zhao Y, Liu K, Lu H, Li W, Guo Y, Lu Y, Zhou C, Fan D, Weng Q, Zhu C, Huang T, Zhang L, Wang Y, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan X, Xu Q, Dong G, Zhan Q, Li C, Fujiyama A, Toyoda A, Lu T, Feng Q, Qian Q, Li J, Han B (2012). A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497-501. |
[6] | Jiao WB, Accinelli GG, Hartwig B, Kiefer C, Baker D, Severing E, Willing EM, Piednoel M, Woetzel S, Madrid-Herrero E, Huettel B, Hümann U, Reinhard R, Koch MA, Swan D, Clavijo B, Coupland G, Schnee-berger K (2017). Improving and correcting the contiguity of long-read genome assemblies of three plant species using optical mapping and chromosome conformation capture data. Genome Res 27, 778-786. |
[7] | Li YH, Zhou G, Ma J, Jiang W, Jin LG, Zhang Z, Guo Y, Zhang J, Sui Y, Zheng L, Zhang SS, Zuo Q, Shi XH, Li YF, Zhang WK, Hu Y, Kong G, Hong HL, Tan B, Song J, Liu ZX, Wang Y, Ruan H, Yeung CKL, Liu J, Wang H, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY, Chang RZ, Jiang Z, Jackson SA, Li R, Qiu LJ (2014). De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32, 1045-1052. |
[8] | Liu Y, Du H, Li P, Shen Y, Peng H, Liu S, Zhou GA, Zhang H, Liu Z, Shi M, Huang X, Li Y, Zhang M, Wang Z, Zhu B, Han B, Liang C, Tian Z (2020). Pan-genome of wild and cultivated soybeans. Cell 182, 162-176. |
[9] | Lye ZN, Purugganan MD (2019). Copy number variation in domestication. Trends Plant Sci 24, 352-365. |
[10] | Morrissey J, Guerinot ML (2009). Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109, 4553-4567. |
[11] | Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010). Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183. |
[12] | Tuteja JH, Clough SJ, Chan WC, Vodkin LO (2004). Tissue-specific gene silencing mediated by a naturally occurring chalcone synthase gene cluster in Glycine max. Plant Cell 16, 819-835. |
[13] | Watanabe S, Hideshima R, Xia Z, Tsubokura Y, Sato S, Nakamoto Y, Yamanaka N, Takahashi R, Ishimoto M, Anai T, Tabata S, Harada K (2009). Map-based cloning of the gene associated with the soybean maturity locus E3. Genetics 182, 1251-1262. |
[14] | Xie M, Chung CY, Li MW, Wong FL, Wang X, Liu A, Wang Z, Leung AK, Wong TH, Tong SW, Xiao Z, Fan K, Ng MS, Qi X, Yang L, Deng T, He L, Chen L, Fu A, Ding Q, He J, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen HT, Cannon SB, Foyer CH, Chan TF, Lam HM (2019). A reference-grade wild soybean genome. Nat Commun 10, 1216. |
[15] | Zhao Q, Feng Q, Lu H, Li Y, Wang A, Tian Q, Zhan Q, Lu Y, Zhang L, Huang T, Wang Y, Fan D, Zhao Y, Wang Z, Zhou C, Chen J, Zhu C, Li W, Weng Q, Xu Q, Wang ZX, Wei X, Han B, Huang X (2018). Pan-genome analysis highlights the extent of genomic variation in cultivated and wild rice. Nat Genet 50, 278-284. |
/
〈 | 〉 |