Advances of NPH3/RPT2-Like (NRL) Family Proteins in Phototropin-mediated Signaling in Arabidopsis thaliana
Received date: 2019-09-23
Accepted date: 2019-12-31
Online published: 2020-01-03
Upon blue light-triggered autophosphorylation, the activated PHOT1 and PHOT2 photoreceptors function solely or redundantly to regulate diverse responses, such as stomatal opening, chloroplast movements, phototropism, and leaf positioning and flattening in Arabidopsis thaliana. Members of NPH3/RPT2-Like family (NRL) are necessary to elicit several photo-responses. NPH3 is required for phototropism, leaf expansion and positioning. RPT2 regulates chloroplast accumulation movement besides NPH3-mediated responses. NCH1 was recently identified as a Phot1-interacting protein that functions redundantly with RPT2 to mediate chloroplast accumulation movement, but not chloroplast avoidance movement. This article summarized the function of NRL family members in phototropin-mediated signaling and prospected further research, thus providing clues for fully revealing the function of the NRL family proteins.
Key words: Arabidopsis; blue light; NPH3/RPT2-Like family protein; phototropin
Qingping Zhao,Shifan Ma,Ruixi Li,Tianyu Wang,Xiang Zhao . Advances of NPH3/RPT2-Like (NRL) Family Proteins in Phototropin-mediated Signaling in Arabidopsis thaliana[J]. Chinese Bulletin of Botany, 2020 , 55(2) : 240 -253 . DOI: 10.11983/CBB19187
[1] | 刘广超, 丁兆军 ( 2018). 生长素介导环境信号调控植物的生长发育. 植物学报 53, 17-26. |
[2] | 赵翔, 王琳丹, 李园园, 赵青平, 张骁 ( 2014). PHOT2介导拟南芥下胚轴向光弯曲调节子的筛选与鉴定. 植物学报 49, 254-261. |
[3] | 赵翔, 赵青平, 杨煦, 慕世超, 张骁 ( 2015). 向光素调节植物向光性及其与光敏色素/隐花色素的相互关系. 植物学报 50, 122-132. |
[4] | Aggarwal C, Bana? AK, Kasprowicz-Malu?ki A, Borghetti C, ?abuz J, Dobrucki J, Gabry? H ( 2014). Blue-lightactivated phototropin 2 trafficking from the cytoplasm to Golgi/post-Golgi vesicles. J Exp Bot 65, 3263-3276. |
[5] | Assmann SM, Simoncini L, Schroeder JI ( 1985). Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature 318, 285-287. |
[6] | Blakeslee JJ, Bandyopadhyay A, Peer WA, Makam SN, Murphy AS ( 2004). Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol 134, 28-31. |
[7] | Boex-Fontvieille E, Davanture M, Jossier M, Zivy M, Hodges M, Tcherkez G ( 2014). Photosynthetic activity influences cellulose biosynthesis and phosphorylation of proteins involved therein in Arabidopsis leaves. J Exp Bot 65, 4997-5010. |
[8] | Briggs WR, Christie JM ( 2002). Phototropins 1 and 2: versatile plant blue-light receptors. Trends Plant Sci 7, 204-210. |
[9] | Cheng YF, Qin GJ, Dai XH, Zhao YD ( 2008). NPY genes and AGC kinases define two key steps in auxin-mediated organogenesis in Arabidopsis. Proc Natl Acad Sci USA 105, 21017-21022. |
[10] | Christie JM, Blackwood L, Petersen J, Sullivan S ( 2015). Plant flavoprotein photoreceptors. Plant Cell Physiol 56, 401-413. |
[11] | Christie JM, Murphy AS ( 2013). Shoot phototropism in higher plants: new light through old concepts. Am J Bot 100, 35-46. |
[12] | Christie JM, Reymond P, Powell GK, Bernasconi P, Raibekas AA, Liscum E, Briggs WR ( 1998). Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism. Science 282, 1698-1701. |
[13] | Christie JM, Suetsugu N, Sullivan S, Wada M ( 2018). Shining light on the function of NPH3/RPT2-like proteins in phototropin signaling. Plant Physiol 176, 1015-1024. |
[14] | Christie JM, Yang HB, Richter GL, Sullivan S, Thomson CE, Lin JS, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS ( 2011). phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9, e1001076. |
[15] | de Carbonnel M, Davis P, Roelfsema MR, Inoue S, Schepens I, Lariguet P, Geisler M, Shimazaki K, Hangarter R, Fankhauser C ( 2010). The Arabidopsis PHYTOCHROME KINASE SUBSTRATE 2 protein is a phototropin signaling element that regulates leaf flattening and leaf positioning. Plant Physiol 152, 1391-1405. |
[16] | Demarsy E, Fankhauser C ( 2009). Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12, 69-74. |
[17] | Demarsy E, Schepens I, Okajima K, Hersch M, Bergmann S, Christie J, Shimazaki K, Tokutomi S, Fankhauser C ( 2012). Phytochrome Kinase Substrate 4 is phosphorylated by the phototropin 1 photoreceptor. EMBO J 31, 3457-3467. |
[18] | Deng ZP, Oses-Prieto JA, Kutschera U, Tseng TS, Hao LZ, Burlingame AL, Wang ZY, Briggs WR ( 2014). Blue light-induced proteomic changes in etiolated Arabidopsis seedlings. J Proteome Res 13, 2524-2533. |
[19] | Ding ZJ, Galván-Ampudia CS, Demarsy E, ?angowski L, Kleine-Vehn J, Fan YW, Morita MT, Tasaka M, Fankhauser C, Offringa R, Friml J ( 2011). Light-mediated polarization of the PIN3 auxin transporter for the phototropic response in Arabidopsis. Nat Cell Biol 13, 447-452. |
[20] | Fankhauser C, Christie JM ( 2015). Plant phototropic growth. Curr Biol 25, R384-R389. |
[21] | Figueroa P, Gusmaroli G, Serino G, Habashi J, Ma LG, Shen YP, Feng SH, Bostick M, Callis J, Hellmann H, Deng XW ( 2005). Arabidopsis has two redundant Cullin3 proteins that are essential for embryo development and that interact with RBX1 and BTB proteins to form multisubunit E3 ubiquitin ligase complexes in vivo. Plant Cell 17, 1180-1195. |
[22] | Folta KM, Kaufman LS ( 2003). Phototropin 1 is required for high-fluence blue-light-mediated mRNA destabilization. Plant Mol Biol 51, 609-618. |
[23] | Folta KM, Lieg EJ, Durham T, Spalding EP ( 2003). Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol 133, 1464-1470. |
[24] | Gingerich DJ, Gagne JM, Salter DW, Hellmann H, Estelle M, Ma LG, Vierstra RD ( 2005). Cullins 3a and 3b assemble with members of the broad complex/tramtrack/bric-a- brac (BTB) protein family to form essential ubiquitin-protein ligases (E3s) in Arabidopsis. J Biol Chem 280, 18810-18821. |
[25] | Haga K, Tsuchida-Mayama T, Yamada M, Sakai T ( 2015). Arabidopsis ROOT PHOTOTROPISM2 contributes to the adaptation to high-intensity light in phototropic responses. Plant Cell 27, 1098-1112. |
[26] | Harada A, Takemiya A, Inoue SI, Sakai T, Shimazaki K ( 2013). Role of RPT2 in leaf positioning and flattening and a possible inhibition of phot2 signaling by phot1. Plant Cell Physiol 54, 36-47. |
[27] | Hetherington AM, Woodward FI ( 2003). The role of stomata in sensing and driving environmental change. Nature 424, 901-908. |
[28] | Higa T, Suetsugu N, Wada M ( 2014). Plant nuclear photorelocation movement. J Exp Bot 65, 2873-2881. |
[29] | Hiyama A, Takemiya A, Munemasa S, Okuma E, Sugiyama N, Tada Y, Murata Y, Shimazaki KI ( 2017). Blue light and CO2 signals converge to regulate light-induced stomatal opening. Nat Commun 8, 1284. |
[30] | Inada S, Ohgishi M, Mayama T, Okada K, Sakai T ( 2004). RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16, 887-896. |
[31] | Inoue SI, Kinoshita T ( 2017). Blue light regulation of stomatal opening and the plasma membrane H+-ATPase . Plant Physiol 174, 531-538. |
[32] | Inoue SI, Kinoshita T, Matsumoto M, Nakayama KI, Doi M, Shimazaki K (2008a). Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA 105, 5626-5631. |
[33] | Inoue SI, Kinoshita T, Takemiya A, Doi M, Shimazaki K (2008b). Leaf positioning of Arabidopsis in response to blue light. Mol Plant 1, 15-26. |
[34] | Inoue SI, Matsushita T, Tomokiyo Y, Matsumoto M, Nakayama KI, Kinoshita T, Shimazaki K ( 2011). Functional analyses of the activation loop of phototropin2 in Arabidopsis. Plant Physiol 156, 117-128. |
[35] | Jeong RD, Chandra-Shekara AC, Barman SR, Navarre D, Klessig DF, Kachroo A, Kachroo P ( 2010). Cryptochrome 2 and phototropin 2 regulate resistance protein-mediated viral defense by negatively regulating an E3 ubiquitin ligase. Proc Natl Acad Sci USA 107, 13538-13543. |
[36] | Kadota A, Yamada N, Suetsugu N, Hirose M, Saito C, Shoda K, Ichikawa S, Kagawa T, Nakano A, Wada M ( 2009). Short actin-based mechanism for light-directed chloroplast movement in Arabidopsis. Proc Natl Acad Sci USA 106, 13106-13111. |
[37] | Kagawa T, Sakai T, Suetsugu N, Oikawa K, Ishiguro S, Kato T, Tabata S, Okada K, Wada M ( 2001). Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138-2141. |
[38] | Kaiserli E, Sullivan S, Jones MA, Feeney KA, Christie JM ( 2009). Domain swapping to assess the mechanistic basis of Arabidopsis phototropin 1 receptor kinase activation and endocytosis by blue light. Plant Cell 21, 3226-3244. |
[39] | Kami C, Allenbach L, Zourelidou M, Ljung K, Schütz F, Isono E, Watahiki MK, Yamamoto KT, Schwechheimer C, Fankhauser C ( 2014). Reduced phototropism in pks mutants may be due to altered auxin-regulated gene expression or reduced lateral auxin transport. Plant J 77, 393-403. |
[40] | Kasahara M, Kagawa T, Sato Y, Kiyosue T, Wada M ( 2004). Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol 135, 1388-1397. |
[41] | Kimuraa T, Tsuchida-Mayamab T, Imaia H, Okajimad K, Ito K, Sakai T ( 2020). Arabidopsis ROOT PHOTOTROPISM2 is a light-dependent dynamic modulator of phototropin 1. Plant Cell doi: 10.1105/tpc.19.00926. |
[42] | Kinoshita T, Doi M, Suetsugu N, Kagawa T, Wada M, Shimazaki K ( 2001) Phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656-660. |
[43] | Kong SG, Wada M ( 2014). Recent advances in understanding the molecular mechanism of chloroplast photorelocation movement. Biochim Biophys Acta 1837, 522-530. |
[44] | Kong SG, Wada M ( 2016). Molecular basis of chloroplast photorelocation movement. J Plant Res 129, 159-166. |
[45] | Lalanne E, Honys D, Johnson A, Borner GHH, Lilley KS, Dupree P, Grossniklaus U, Twell D ( 2004). SETH1 and SETH2, two components of the glycosylphosphatidylinositol anchor biosynthetic pathway, are required for pollen germination and tube growth in Arabidopsis. Plant Cell 16, 229-240. |
[46] | Lariguet P, Schepens I, Hodgson D, Pedmale UV, Trevisan M, Kami C, de Carbonnel M, Alonso JM, Ecker JR, Liscum E, Fankhauser C ( 2006). PHYTOCHROME KINASE SUBSTRATE 1 is a phototropin 1 binding protein required for phototropism. Proc Natl Acad Sci USA 103, 10134-10139. |
[47] | Li YT, Dai XH, Cheng YF, Zhao YD ( 2011). NPY genes play an essential role in root gravitropic responses in Arabidopsis. Mol Plant 4, 171-179. |
[48] | Liscum E, Askinosie SK, Leuchtman DL, Morrow J, Willenburg KT, Coats DR ( 2014). Phototropism: growing towards an understanding of plant movement. Plant Cell 26, 38-55. |
[49] | Liscum E, Briggs WR ( 1995). Mutations in the NPH1 locus of Arabidopsis disrupt the perception of phototropic stimuli. Plant Cell 7, 473-485. |
[50] | Liscum E, Briggs WR ( 1996). Mutations of Arabidopsis in potential transduction and response components of the phototropic signaling pathway. Plant Physiol 112, 291-296. |
[51] | Liscum E, Nittler P, Koskie K ( 2020). The continuing arc toward phototropic enlightenment. J Exp Bot 71, 1652-1658 |
[52] | Marten I, Deeken R, Hedrich R, Roelfsema MR ( 2010). Light-induced modification of plant plasma membrane ion transport. Plant Biol 12, 64-79. |
[53] | Moni A, Lee AY, Briggs WR, Han IS ( 2015). The blue light receptor Phototropin 1 suppresses lateral root growth by controlling cell elongation. Plant Biol 17, 34-40. |
[54] | Morrow J, Willenburg KT, Liscum E ( 2018). Phototropism in land plants: molecules and mechanism from light perception to response. Front Biol 5, 342-357. |
[55] | Motchoulski A, Liscum E ( 1999). Arabidopsis NPH3: a NPH1 photoreceptor-linteracting protein essential for phototropism. Science 286, 961-964. |
[56] | Mott KA, Sibbernsen ED, Shope JC ( 2008). The role of the mesophyll in stomatal responses to light and CO2. Plant Cell Environ 31, 1299-1306. |
[57] | Pedmale UV, Celaya RB, Liscum E ( 2010). Phototropism: mechanism and outcomes. Arabidopsis Book 8, e0125. |
[58] | Pedmale UV, Liscum E ( 2007). Regulation of phototropic signaling in Arabidopsis via phosphorylation state changes in the phototropin 1-interacting protein NPH3. J Biol Chem 282, 19992-20001. |
[59] | Petricka JJ, Clay NK, Nelson TM ( 2008). Vein patterning screens and the defectively organized tributaries mutants in Arabidopsis thaliana. Plant J 56, 251-263. |
[60] | Pfeifer A, Mathes T, Lu YH, Hegemann P, Kottke T ( 2010). Blue light induces global and localized conformational changes in the kinase domain of full-length phototropin. Biochemistry 49, 1024-1032. |
[61] | Roberts D, Pedmale UV, Morrow J, Sachdev S, Lechner E, Tang XB, Zheng N, Hannink M, Genschik P, Liscum E ( 2011). Modulation of phototropic responsiveness in Arabidopsis through ubiquitination of phototropin 1 by the CUL3-ring E3 ubiquitin ligase CRL3 NPH3. Plant Cell 23, 3627-3640. |
[62] | Roelfsema MRG, Hedrich R ( 2005). In the light of stomatal opening: new insights into 'the Watergate'. New Phytol 167, 665-691. |
[63] | Sakai T, Kagawa T, Kasahara M, Swartz TE, Christie JM, Briggs WR, Wada M, Okada K ( 2001). Arabidopsis nph1 and npl1: blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98, 6969-6974. |
[64] | Sakai T, Wada T, Ishiguro S, Okada K ( 2000). RPT2: a signal transducer of the phototropic response in Arabidopsis. Plant Cell 12, 225-236. |
[65] | Sakamoto K, Briggs WR ( 2002). Cellular and subcellular localization of phototropin 1. Plant Cell 14, 1723-1735. |
[66] | Salomon M, Knieb E, von Zeppelin T, Rüdiger W ( 2003). Mapping of low- and high-fluence autophosphorylation sites in phototropin 1. Biochemistry 42, 4217-4225. |
[67] | Shang BS, Zang YH, Zhao X, Zhu JD, Fan C, Guo XN, Zhang X ( 2019). Functional characterization of GhPHOT2 in chloroplast avoidance of Gossypium hirsutum. Plant Physiol Biochem 135, 51-60. |
[68] | Shimazaki K, Doi M, Assmann SM, Kinoshita T, ( 2007). Light regulation of stomatal movement. Annu Rev Plant Biol 58, 219-247. |
[69] | Stone BB, Stowe-Evans EL, Harper RM, Celaya RB, Ljung K, Sandberg G, Liscum E ( 2008). Disruptions in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant 1, 129-144. |
[70] | Suetsugu N, Higa T, Kong SG, Wada M ( 2015). PLASTID MOVEMENT IMPAIRED 1 and PLASTID MOVEMENT IMPAIRED1-RELATED 1 mediate photorelocation movements of both chloroplasts and nuclei. Plant Physiol 169, 1155-1167. |
[71] | Suetsugu N, Takami T, Ebisu Y, Watanabe H, Iiboshi C, Doi M, Shimazaki K ( 2014). Guard cell chloroplasts are essential for blue light-dependent stomatal opening in Arabidopsis. PLoS One 9, e108374. |
[72] | Suetsugu N, Takemiya A, Kong SG, Higa T, Komatsu A, Shimazaki K, Kohchi T, Wada M ( 2016). RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proc Natl Acad Sci USA 113, 10424-10429. |
[73] | Suetsugu N, Wada M ( 2017). Two coiled-coil proteins, WEB1 and PMI2, suppress the signaling pathway of chloroplast accumulation response that is mediated by two phototropin-interacting proteins, RPT2 and NCH1, in seed plants. Int J Mol Sci 18, 1469. |
[74] | Sullivan S, Kharshiing E, Laird J, Sakai T, Christie JM ( 2019). Deetiolation enhances phototropism by modulating NON-PHOTOTROPIC HYPOCOTYL 3 phosphorylation status. Plant Physiol 180, 1119-1131. |
[75] | Sullivan S, Thomson CE, Kaiserli E, Christie JM ( 2009). Interaction specificity of Arabidopsis 14-3-3 proteins with phototropin receptor kinases. FEBS Lett 583, 2187-2193. |
[76] | Sun JQ, Qi LL, Li YN, Zhai QZ, Li CY ( 2013). PIF4 and PIF5 transcription factors link blue light and auxin to regulate the phototropic response in Arabidopsis. Plant Cell 25, 2102-2114. |
[77] | Sussmilch FC, Schultz J, Hedrich R, Roelfsema MRG ( 2019). Acquiring control: the evolution of stomatal signaling pathways. Trends Plant Sci 24, 342-351. |
[78] | Takemiya A, Shimazaki K ( 2016). Arabidopsis phot1 and phot2 phosphorylate BLUS1 kinase with different efficiencies in stomatal opening. J Plant Res 129, 167-174. |
[79] | Tseng TS, Briggs WR ( 2010). The Arabidopsis rcn1-1 mutation impairs dephosphorylation of Phot2, resulting in enhanced blue light responses. Plant Cell 22, 392-402. |
[80] | Tsuchida-Mayama T, Nakano M, Uehara Y, Sano M, Fujisawa N, Okada K, Sakai T ( 2008). Mapping of the phosphorylation sites on the phototropic signal transducer, NPH3. Plant Sci 174, 626-633. |
[81] | Tsuchida-Mayama T, Sakai T, Hanada A, Uehara Y, Asami T, Yamaguchi S ( 2010). Role of the phytochrome and cryptochrome signaling pathways in hypocotyl phototropism. Plant J 62, 653-662. |
[82] | Tsutsumi T, Takemiya A, Harada A, Shimazaki K ( 2013). Disruption of ROOT PHOTOTROPISM 2 gene does not affect phototropin-mediated stomatal opening. Plant Sci 201-202, 93-97. |
[83] | Wada M ( 2013). Chloroplast movement. Plant Sci 210, 177-182. |
[84] | Wada M ( 2016). Chloroplast and nuclear photorelocation movements. Proc Japan Acad Ser B 92, 387-411. |
[85] | Wan YL, Eisinger W, Ehrhardt D, Kubitscheck U, Baluska F, Briggs W ( 2008). The subcellular localization and blue-light-induced movement of phototropin 1-GFP in etiolated seedlings of Arabidopsis thaliana. Mol Plant 1, 103-117. |
[86] | Wan YL, Jasik J, Wang L, Hao HQ, Volkmann D, Menzel D, Mancuso S, Balu?ka F, Lin JX ( 2012). The signal transducer NPH3 integrates the phototropin1 photosensor with PIN2-based polar auxin transport in Arabidopsis root phototropism. Plant Cell 24, 551-565. |
[87] | Willige BC, Ahlers S, Zourelidou M, Barbosa ICR, Demarsy E, Trevisan M, Davis PA, Roelfsema MRG, Hangarter R, Fankhauser C, Schwechheimer C ( 2013). D6PK AGCVIII kinases are required for auxin transport and phototropic hypocotyl bending in Arabidopsis. Plant Cell 25, 1674-1688. |
[88] | Yamauchi S, Takemiya A, Sakamoto T, Kurata T, Tsutsumi T, Kinoshita T, Shimazaki K ( 2016). The plasma membrane H+-ATPase AHA1 plays a major role in stomatal opening in response to blue light. Plant Physiol 171, 2731-2743. |
[89] | Zhang D, Wengier D, Shuai B, Gui CP, Muschietti J, McCormick S, Tang WH ( 2008). The pollen receptor kinase LePRK2 mediates growth-promoting signals and positively regulates pollen germination and tube growth. Plant Physiol 148, 1368-1379. |
[90] | Zhang L, Du LQ, Shen CJ, Yang YJ, Poovaiah BW ( 2014). Regulation of plant immunity through ubiquitin-mediated modulation of Ca 2+-calmodulin-AtSR1/CAMTA3 signaling . Plant J 78, 269-281. |
[91] | Zhao QP, Zhu JD, Li NN, Wang XN, Zhao X, Zhang X ( 2019). Cryptochrome-mediated hypocotyl phototropism was regulated antagonistically by gibberellic acid and sucrose in Arabidopsis. J Integr Plant Biol doi: 10.1111/ jipb.12813. |
[92] | Zhao X, Wang YL, Qiao XR, Wang J, Wang LD, Xu CS, Zhang X ( 2013). Phototropins function in high-intensity blue light-induced hypocotyl phototropism in Arabidopsis by altering cytosolic calcium. Plant Physiol 162, 1539-1551. |
[93] | Zhao X, Zhao QP, Xu CY, Wang J, Zhu JD, Shang BS, Zhang X ( 2018). Phot2-regulated relocation of NPH3 mediates phototropic response to high-intensity blue light in Arabidopsis thaliana. J Integr Plant Biol 60, 562-577. |
/
〈 | 〉 |