INVITED REVIEWS

Advances in Biofunctions of the ABCB Subfamily in Plants

Expand
  • 1 State Key Laboratory of Plant Physiology and Biochemistry, Institute of Plant Biology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
    2 Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Huhhot 010000, China;

Received date: 2019-07-27

  Accepted date: 2019-09-29

  Online published: 2019-09-30

Abstract

The superfamily of ABC (ATP-binding cassette) transporters, which contains eight subfamilies from ABCA to ABCH, has diverse structures and complex functions. ABCB transporters, are mostly located in the plasma membrane, while others are located in the mitochondrial membrane or chloroplast membrane. ABCB transporters, together with AUX1/LAX (AUXIN1/LIKE AUXIN) and PIN (PIN-FORMED), coordinate and participate in the polar transport of auxin, and play an important role in regulating plant growth and development. ABCB transporters also function in plant tropism and resistance to heavy metals. In recent years, with the completion of whole-genome sequencing in different plants, research on ABCB genes is no longer confined to the model plant Arabidopsis thaliana, rather, preliminary studies have been carried out to explore the functions of ABCB genes in cereal including rice, maize, and sorghum. However, the functions for most of the plant ABCB transporters remain elusive. Here we reviewed the research progress and future development of ABCB subfamily transporters in Arabidopsis and cereal, in the hope of providing clues for fully revealing biofunctions of the ABCB subfamily.

Cite this article

Zhenmei He,Dongming Li,Yanhua Qi . Advances in Biofunctions of the ABCB Subfamily in Plants[J]. Chinese Bulletin of Botany, 2019 , 54(6) : 688 -698 . DOI: 10.11983/CBB19140

References

[1] 刘广超, 丁兆军 ( 2018). 生长素介导环境信号调控植物的生长发育. 植物学报 53, 17-26.
[2] 王华丙, 张振义, 包锐, 陈宇星 ( 2007). ABC转运蛋白的结构与转运机制. 生命的化学 27, 208-210.
[3] 王晓珠, 孙万梅, 马义峰, 韩二琴, 韩丽, 孙丽萍, 彭再慧, 王邦俊 ( 2017). 拟南芥ABC转运蛋白研究进展. 植物生理学报 53, 133-144.
[4] 徐杏, 邱杰, 徐扬, 徐辰武 ( 2012). 水稻ABCB转运蛋白基因的分子进化和表达分析. 中国水稻科学 26, 127-136.
[5] 许智宏, 薛红卫 (2012). 植物激素作用的分子机理. 上海: 上海科学技术出版社. pp. 25-31.
[6] Balzan S, Johal GS, Carraro N ( 2014). The role of auxin transporters in monocots development. Front Plant Sci 5, 393.
[7] Bandyopadhyay A, Blakeslee JJ, Lee OR, Mravec J, Sauer M, Titapiwatanakun B, Makam SN, Bouchard R, Geisler M, Martinoia E, Friml J, Peer WA, Murphy AS ( 2007). Interactions of PIN and PGP auxin transport mechanisms. Biochem Soc Trans 35, 137-141.
[8] Blakeslee JJ, Bandyopadhyay A, Lee OR, Mravec J, Titapiwatanakun B, Sauer M, Makam SN, Cheng Y, Bouchard R, Adamec J, Geisler M, Nagashima A, Sakai T, Martinoia E, Friml J, Peer WA, Murphy AS ( 2007). Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19, 131-147.
[9] Canamero RC, Bakrim N, Bouly JP, Garay A, Dudkin EE, Habricot Y, Ahmad M ( 2006). Cryptochrome photoreceptors cry1 and cry2 antagonistically regulate primary root elongation in Arabidopsis thaliana. Planta 224, 995-1003.
[10] Cecchetti V, Brunetti P, Napoli N, Fattorini L, Altamura MM, Costantino P, Cardarelli M ( 2015). ABCB1 and ABCB19 auxin transporters have synergistic effects on early and late Arabidopsis anther development. J Integr Plant Biol 57, 1089-1098.
[11] Chai CL, Subudhi PK ( 2016). Comprehensive analysis and expression profiling of the OsLAX and OsABCB auxin transporter gene families in rice(Oryza sativa) under phytohormone stimuli and abiotic stresses. Front Plant Sci 7, 593.
[12] Chen SX, Sánchez-Fernández R, Lyver ER, Dancis A, Rea PA ( 2007). Functional characterization of AtATM1, AtATM2, and AtATM3, a subfamily of Arabidopsis half- molecule ATP-binding cassette transporters implicated in iron homeostasis. J Biol Chem 282, 21561-21571.
[13] Cho M, Lee SH, Cho HT ( 2007). P-glycoprotein4 displays auxin efflux transporter-like action in Arabidopsis root hair cells and tobacco cells. Plant Cell 19, 3930-3943.
[14] Christie JM, Yang HB, Richter GL, Sullivan S, Thomson CE, Lin JS, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS ( 2011). phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 9, e100 1076.
[15] Dean M, Rzhetsky A, Allikmets R ( 2001). The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11, 1156-1166.
[16] Dudler R, Hertig C ( 1992). Structure of an mdr-like gene from Arabidopsis thaliana. Evolutionary implications. J Biol Chem 267, 5882-5888.
[17] Ferro M, Brugière S, Salvi D, Seigneurin-Berny D, Court M, Moyet L, Ramus C, Miras S, Mellal M, Le Gall S, Kieffer-Jaquinod S, Bruley C, Garin J, Joyard J, Masselon C, Rolland N ( 2010). AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9, 1063-1084.
[18] Geisler M, Aryal B, di Donato M, Hao PC ( 2017). A critical view on ABC transporters and their interacting partners in auxin transport. Plant Cell Physiol 58, 1601-1614.
[19] Geisler M, Bailly A, Ivanchenko M ( 2016). Master and servant: regulation of auxin transporters by FKBPs and cyclophilins. Plant Sci 245, 1-10.
[20] Geisler M, Blakeslee JJ, Bouchard R, Lee OR, Vincenzetti V, Bandyopadhyay A, Titapiwatanakun B, Peer WA, Bailly A, Richards EL, Ejendal KFK, Smith AP, Baroux C, Grossniklaus U, Müller A, Hrycyna CA, Dudler R, Murphy AS, Martinoia E ( 2005). Cellular efflux of auxin catalyzed by the Arabidopsis MDR/PGP transporter AtPGP1. Plant J 44, 179-194.
[21] Geisler M, Girin M, Brandt S, Vincenzetti V, Plaza S, Paris N, Kobae Y, Maeshima M, Billion K, Kolukisaoglu UH, Schulz B, Martinoia E ( 2004). Arabidopsis immunophilin-like TWD1 functionally interacts with vacuolar ABC transporters. Mol Biol Cell 15, 3393-3405.
[22] Geisler M, Kolukisaoglu Hü, Bouchard R, Billion K, Berger J, Saal B, Frangne N, Koncz-Kálmán Z, Koncz C, Dudler R, Blakeslee JJ, Murphy AS, Martinoia E, Schulz B ( 2003). TWISTED DWARF1, a unique plasma membrane-anchored immunophilin-like protein, interacts with Arabidopsis multidrug resistance-like transporters AtPGP1 and AtPGP19. Mol Biol Cell 14, 4238-4249.
[23] Granzin J, Eckhoff A, Weiergraber OH ( 2006). Crystal structure of a multi-domain immunophilin from Arabidopsis thaliana: a paradigm for regulation of plant ABC transporters. J Mol Biol 364, 799-809.
[24] Henrichs S, Wang BJ, Fukao Y, Zhu JS, Charrier L, Bailly A, Oehring SC, Linnert M, Weiwad M, Endler A, Nanni P, Pollmann S, Mancuso S, Schulz A, Geisler M ( 2012). Regulation of ABCB1/PGP1-catalysed auxin transport by linker phosphorylation. EMBO J 31, 2965-2980.
[25] Higgins CF, Linton KJ ( 2004). The ATP switch model for ABC transporters. Nat Struct Mol Biol 11, 918-926.
[26] Huang CF, Yamaji N, Mitani N, Yano M, Nagamura Y, Ma JF ( 2009). A bacterial-type ABC transporter is involved in aluminum tolerance in rice. Plant Cell 21, 655-667.
[27] Hwang JU, Song WY, Hong D, Ko D, Yamaoka Y, Jang S, Yim S, Lee E, Khare D, Kim K, Palmgren M, Yoon HS, Martinoia E, Lee Y ( 2016). Plant ABC transporters enable many unique aspects of a terrestrial plant’s lifestyle. Mol Plant 9, 338-355.
[28] Jenness MK, Carraro N, Pritchard CA, Murphy AS ( 2019). The Arabidopsis ATP-binding cassette transporter ABCB21 regulates auxin levels in cotyledons, the root pericycle, and leaves. Front Plant Sci 10, 806.
[29] Jensen PJ, Hangarter RP, Estelle M ( 1998). Auxin trans-port is required for hypocotyl elongation in light-grown but not dark-grownArabidopsis. Plant Physiol 116, 455-462.
[30] Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, Shitan N, Sugiyama A, Suzuki H, Shibata D, Wang BJ, Pollmann S, Geisler M, Yazaki K ( 2012). Ara-bidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. Plant Cell Physiol 53, 2090-2100.
[31] Kaneda M, Schuetz M, Lin BS, Chanis C, Hamberger B, Western TL, Ehlting J, Samuels AL ( 2011). ABC transporters coordinately expressed during lignification of Arabidopsis stems include a set of ABCBs associated with auxin transport. J Exp Bot 62, 2063-2077.
[32] Kim DY, Bovet L, Kushnir S, Noh EW, Martinoia E, Lee Y ( 2006). AtATM3 is involved in heavy metal resistance in Arabidopsis. Plant Physiol 140, 922-932.
[33] Kim JY, Henrichs S, Bailly A, Vincenzetti V, Sovero V, Mancuso S, Pollmann S, Kim D, Geisler M, Nam HG ( 2010). Identification of an ABCB/P-glycoprotein-specific inhibitor of auxin transport by chemical genomics. J Biol Chem 285, 23309-23317.
[34] Kube? M, Yang HB, Richter GL, Cheng Y, M?odzińska E, Wang X, Blakeslee JJ, Carraro N, Petrá?ek J, Za?ímalová E, Hoyerová K, Peer WA, Murphy AS ( 2012). The Arabidopsis concentration-dependent influx/efflux transporter ABCB4 regulates cellular auxin levels in the root epidermis. Plant J 69, 640-654.
[35] Larsen PB, Cancel J, Rounds M, Ochoa V ( 2007). Arabidopsis ALS1 encodes a root tip and stele localized half type ABC transporter required for root growth in an aluminum toxic environment. Planta 225, 1447-1458.
[36] Lee M, Choi Y, Burla B, Kim YY, Jeon B, Maeshima M, Yoo JY, Martinoia E, Lee Y ( 2008). The ABC transporter AtABCB14 is a malate importer and modulates stomatal response to CO2. Nat Cell Biol 10, 1217-1223.
[37] Lewis DR, Miller ND, Splitt BL, Wu GS, Spalding EP ( 2007). Separating the roles of acropetal and basipetal auxin transport on gravitropism with mutations in two Arabidopsis multidrug resistance-like ABC transporter genes. Plant Cell 19, 1838-1850.
[38] Lin RC, Wang HY ( 2005). Two homologous ATP-binding cassette transporter proteins, AtMDR1 and AtPGP1, regulate Arabidopsis photomorphogenesis and root development by mediating polar auxin transport. Plant Physiol 138, 949-964.
[39] Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS ( 2003). Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302, 81-84.
[40] Nagashima A, Suzuki G, Uehara Y, Saji K, Furukawa T, Koshiba T, Sekimoto M, Fujioka S, Kuroha T, Kojima M, Sakakibara H, Fujisawa N, Okada K, Sakai T ( 2008). Phytochromes and cryptochromes regulate the differential growth of Arabidopsis hypocotyls in both a PGP19-dependent and a PGP19-independent manner. Plant J 53, 516-529.
[41] Nguyen VNT, Moon S, Jung KH ( 2014). Genome-wide expression analysis of rice ABC transporter family across spatio-temporal samples and in response to abiotic stresses. J Plant Physiol 171, 1276-1288.
[42] Noh B, Murphy AS, Spalding EP ( 2001). Multidrug resistance-like genes of Arabidopsis required for auxin transport and auxin-mediated development. Plant Cell 13, 2441-2454.
[43] Okamoto K, Ueda H, Shimada T, Tamura K, Koumoto Y, Tasaka M, Morita MT, Hara-Nishimura I ( 2016). An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems. Plant Signal Behav 11, e1010947.
[44] Pang KY, Li YJ, Liu MH, Meng ZD, Yu YL ( 2013). Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L.). Gene 526, 411-428.
[45] Parks BM, Spalding EP ( 1999). Sequential and coordinated action of phytochromes A and B during Arabidopsis stem growth revealed by kinetic analysis. Proc Natl Acad Sci USA 96, 14142-14146.
[46] Saha J, Sengupta A, Gupta K, Gupta B ( 2015). Molecular phylogenetic study and expression analysis of ATP- binding cassette transporter gene family in Oryza sativa in response to salt stress. Comput Biol Chem 54, 18-32.
[47] Salisbury FJ, Hall A, Grierson CS, Halliday KJ ( 2007). Phytochrome coordinates Arabidopsis shoot and root development. Plant J 50, 429-438.
[48] Sánchez-Fernández R, Davies TGE, Coleman JOD, Rea PA ( 2001). The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J Biol Chem 276, 30231-30244.
[49] Santelia D, Vincenzetti V, Azzarello E, Bovet L, Fukao Y, Düchtig P, Mancuso S, Martinoia E, Geisler M ( 2005). MDR-like ABC transporter AtPGP4 is involved in auxin- mediated lateral root and root hair development. FEBS Lett 579, 5399-5406.
[50] Sasaki T, Ezaki B, Matsumoto H ( 2002). A gene encoding multidrug resistance (MDR)-like protein is induced by aluminum and inhibitors of calcium flux in wheat. Plant Cell Physiol 43, 177-185.
[51] Shen CJ, Bai YH, Wang SK, Zhang SN, Wu YR, Chen M, Jiang DA, Qi YH ( 2010). Expression profile of PIN, AUX/LAX and PGP auxin transporter gene families in Sorghum bicolor under phytohormone and abiotic stress. FEBS J 277, 2954-2969.
[52] Sidler M, Hassa P, Hasan S, Ringli C, Dudler R ( 1998). Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. Plant Cell 10, 1623-1636.
[53] Sukumar P, Maloney GS, Muday GK ( 2013). Localized induction of the ATP-binding cassette B19 auxin transporter enhances adventitious root formation in Arabidopsis. Plant Physiol 162, 1392-1405.
[54] Terasaka K, Blakeslee JJ, Titapiwatanakun B, Peer WA, Bandyopadhyay A, Makam SN, Lee OR, Richards EL, Murphy AS, Sato F, Yazaki K ( 2005). PGP4, an ATP binding cassette P-glycoprotein, catalyzes auxin transport in Arabidopsis thaliana roots. Plant Cell 17, 2922-2939.
[55] Theodoulou FL, Kerr ID ( 2015). ABC transporter research: going strong 40 years on. Biochem Soc Trans 43, 1033-1040.
[56] Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu ü, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EP, Yazaki K, Theodoulou FL ( 2008). Plant ABC proteins-a unified nomenclature and updated inventory. Trends Plant Sci 13, 151-159.
[57] Wang BJ, Bailly A, Zwiewka M, Henrichs S, Azzarello E, Mancuso S, Maeshima M, Friml J, Schulz A, Geisler M ( 2013). Arabidopsis TWISTED DWARF1 functionally interacts with auxin exporter ABCB1 on the root plasma membrane. Plant Cell 25, 202-214.
[58] Wang SK, Shen CJ, Zhang SN, Xu YX, Jiang DA, Qi YH ( 2011). Analysis of subcellular localization of auxin carriers PIN, AUX/LAX and PGP in Sorghum bicolor. Plant Signal Behav 6, 2023-2025.
[59] Wu GS, Cameron JN, Ljung K, Spalding EP ( 2010). A role for ABCB19-mediated polar auxin transport in seedling photomorphogenesis mediated by cryptochrome 1 and phytochrome B. Plant J 62, 179-191.
[60] Xu YX, Zhang SN, Guo HP, Wang SK, Xu LG, Li CY, Qian Q, Chen F, Geisler M, Qi YH, Jiang DA ( 2014). OsABCB14 functions in auxin transport and iron homeostasis in rice ( Oryza sativa L.). Plant J 79, 106-117.
[61] Zhang YQ, Nasser V, Pisanty O, Omary M, Wulff N, Di Donato M, Tal I, Hauser F, Hao PC, Roth O, Fromm H, Schroeder JI, Geisler M, Nour-Eldin HH, Shani E ( 2018). A transportome-scale amiRNA-based screen identifies redundant roles of Arabidopsis ABCB6 and ABCB20 in auxin transport. Nat Commun 9, 4204.
[62] Zhao HT, Liu L, Mo HX, Qian LT, Cao Y, Cui SJ, Li X, Ma LG ( 2013). The ATP-binding cassette transporter ABCB19 regulates postembryonic organ separation in Arabidopsis. PLoS One 8, e60809.
[63] Zhu JS, Bailly A, Zwiewka M, Sovero V, Di Donato M, Ge P, Oehri J, Aryal B, Hao PC, Linnert M, Burgardt NI, Lücke C, Weiwad M, Michel M, Weiergr?ber OH, Pollmann S, Azzarello E, Mancuso S, Ferro N, Fukao Y, Hoffmann C, Wedlich-S?ldner R, Friml J, Thomas C, Geisler M ( 2016). TWISTED DWARF1 mediates the action of auxin transport inhibitors on actin cytoskeleton dynamics. Plant Cell 28, 930-948.
[64] Zhu XF, Lei GJ, Wang ZW, Shi YZ, Braam J, Li GX, Zheng SJ ( 2013). Coordination between apoplastic and symplastic detoxification confers plant aluminum resistance. Plant Physiol 162, 1947-1955.
[65] Zuo J, Wu ZG, Li Y, Shen ZD, Feng XY, Zhang MY, Ye H ( 2017). Mitochondrial ABC transporter ATM3 is essential for cytosolic iron-sulfur cluster assembly. Plant Physiol 173, 2096-2109.
Outlines

/