EXPERIMENTAL COMMUNICATIONS

Effect of SmGGPPS2 Expression on Tanshinones Biosynthesis in Salvia miltiorrhiza

Expand
  • 1 Department of Life Sciences and Food Technology, Shaanxi Xueqian Normal University, Xi’an 710061, China
    2 Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an 710062, China
    3 Xi’an Botanical Garden, Xi’an 710068, China
    4 Shaanxi Engineering Research Centre for Conservation and Utilization of Botanical Resources, Xi’an 710068, China

Received date: 2018-10-22

  Accepted date: 2019-02-19

  Online published: 2019-03-26

Abstract

Geranylgerany pyrophosphate synthase (GGPPS) is an important regulator in the plant diterpenoid biosynthesis pathway. The GGPPS gene family plays a critical role in the development of the medicinal model plant Salvia miltiorrhiza. However, the biological function of SmGGPPS2, especially in the biosynthesis of tanshinone or other active ingredients, is still unclear. For functional investigation, SmGGPPS2 expression was up- or down-regulated in S. miltiorrhiza plants via overexpression or RNA interference, respectively. Then we detected the content of tanshinones, the expression of genes related to tanshinone biosynthesis, and the physiological indexes of transgenic S. miltiorrhiza plants. The content of fat-soluble components, such as tanshinone IIA and ferruginol, was increased significantly in SmGG- PPS2-overexpressed lines compared with the wild type, and the content of fat soluble-components was lower in SmGGPPS2-RNAi lines than those in the wild type lines. With the regulation of SmGGPPS2, the expression of key enzyme genes related to tanshinone biosynthesis in S. miltiorrhiza, such as SmHMGR1 and SmCPS1, was changed. In addition, the regulation of SmGGPPS2 expression also affected the resistance of S. miltiorrhiza. Our results indicate that SmGGPPS2 plays an important regulatory role in tanshinone biosynthesis.

Cite this article

Wenping Hua,Chen Chen,Yuan Zhi,Li Liu,Zhezhi Wang,Cuiqin Li . Effect of SmGGPPS2 Expression on Tanshinones Biosynthesis in Salvia miltiorrhiza[J]. Chinese Bulletin of Botany, 2019 , 54(2) : 217 -226 . DOI: 10.11983/CBB18222

References

[1] 化文平, 刘文超, 王喆之, 李翠芹 ( 2016). 干涉丹参SmORA1对植物抗病和丹参酮类次生代谢的影响. 中国农业科学 49, 491-502.
[2] 化文平, 宋双红, 智媛, 王喆之 ( 2014). 丹参SmGGPPS3基因的克隆及表达分析. 植物科学学报 32, 50-57.
[3] 王海燕, 李玉琴, 王广旭 ( 2011). 白花丹参脂溶性成分超临界二氧化碳流体萃取与气相色谱-质谱分析. 医药导报 30, 978-981.
[4] 张蕾 ( 2009). 丹参牻牛儿基牻牛儿基焦磷酸合酶基因的克隆与功能研究. 博士论文. 北京: 中国人民解放军军事医学科学院. pp. 27-40.
[5] Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel WJ, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ ( 2003). Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15, 2866-2884.
[6] Chang TH, Guo RT, Ko TP, Wang AHJ, Liang PH ( 2006). Crystal structure of type-III geranylgeranyl pyrophosphate synthase from Saccharomyces cerevisiae and the mecha- nism of product chain length determination. J Biol Chem 281, 14991-15000.
[7] Chen C, Zhang Y, Qiakefu K, Zhang X, Han LM, Hua WP, Yan YP, Wang ZZ ( 2016). Overexpression of tomato Prosystemin (LePS) enhances pest resistance and the production of tanshinones in Salvia miltiorrhiza Bunge. J Agric Food Chem 64, 7760-7769.
[8] Chen W, He SZ, Liu DG, Patil GB, Zhai H, Wang FB, Stephenson TJ, Wang YN, Wang B, Valliyodan B, Nguyen HT, Liu QC ( 2015). A sweetpotato geranylgeranyl pyrophosphate synthase gene, IbGGPS, increases carotenoid content and enhances osmotic stress tolerance in Arabidopsis thaliana. PLoS One 10, e0137623.
[9] Cheng QQ, Su P, Hu YT, He YF, Gao W, Huang LQ ( 2014). RNA interference-mediated repression of SmCPS (Copalyldiphosphate synthase) expression in hairy roots of Salvia miltiorrhiza causes a decrease of tanshinones and sheds light on the functional role of SmCPS. Biotechnol Lett 36, 363-369.
[10] Cui GH, Duan LX, Jin BL, Qian J, Xue ZY, Shen GA, Snyder JH, Song JY, Chen SL, Huang LQ, Peters RJ, Qi XQ ( 2015). Functional divergence of diterpene syntheses in the medicinal plant Salvia miltiorrhiza . Plant Physiol 169, 1607-1618.
[11] Han JL, Liu BY, Ye HC, Wang H, Li ZQ, Li GF ( 2006). Effects of overexpression of the endogenous farnesyl diphosphate synthase on the artemisinin content in Artemisia annua L. J Integr Plant Biol 48, 482-487.
[12] Hua WP, Song J, Li CQ, Wang ZZ ( 2012). Molecular cloning and characterization of the promoter of SmGGPPs and its expression pattern in Salvia miltiorrhiza. Mol Biol Rep 39, 5775-5783.
[13] Hua WP, Zhang Y, Song J, Zhao LJ, Wang ZZ ( 2011). De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics 98, 272-279.
[14] Kai GY, Liao P, Zhang T, Zhou W, Wang J, Xu H, Liu YY, Zhang L ( 2010). Characterization, expression profiling, and functional identification of a gene encoding geranylgeranyl diphosphate synthase from Salvia miltiorrhiza . Bio- technol Bioproc Eng 15, 236-245.
[15] Kai GY, Xu H, Zhou CC, Liao P, Xiao JB, Luo XQ, You LJ, Zhang L ( 2011). Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza hairy root cultures. Metab Eng 13, 319-327.
[16] Lin TH, Hsieh CL ( 2010). Pharmacological effects of Salvia miltiorrhiza( Danshen) on cerebral infarction. Chin Med 5, 22.
[17] Ma XH, Ma Y, Tang JF, He YL, Liu YC, Ma XJ, Shen Y, Cui GH, Lin HX, Rong QX, Guo J, Huang LQ ( 2015). The biosynthetic pathways of tanshinones and phenolic acids in Salvia miltiorrhiza . Molecules 20, 16235-16254.
[18] Ma YM, Yuan LC, Wu B, Li XE, Chen SL, Lu SF ( 2012). Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza . J Exp Bot 63, 2809-2823.
[19] Shi M, Luo XQ, Ju GH, Li LL, Huang SX, Zhang T, Wang HZ, Kai GY ( 2016). Enhanced diterpene tanshinone accumulation and bioactivity of transgenic Salvia miltiorrhiza hairy roots by pathway engineering. J Agric Food Chem 64, 2523-2530.
[20] Shi M, Luo XQ, Ju GH, Yu XH, Hao XL, Huang Q, Xiao JB, Cui LJ, Kai GY ( 2014). Increased accumulation of the cardio-cerebrovascular disease treatment drug tanshinone in Salvia miltiorrhiza hairy roots by the enzymes 3-hy- droxy-3-methylglutaryl CoA reductase and 1-deoxy-Dxylulose 5-phosphate reductoisomerase. Funct Integr Genom 14, 603-615.
[21] Tata SK, Jung J, Kim YH, Choi JY, Jung JY, Lee IJ, Shin JS, Ryu SB ( 2016). Heterologous expression of chloroplast-localized geranylgeranyl pyrophosphate synthase confers fast plant growth, early flowering and increased seed yield. Plant Biotechnol J 14, 29-39.
[22] Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F ( 2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, research0034.
[23] Yan YP, Wang ZZ ( 2007). Genetic transformation of the medicinal plant Salvia miltiorrhiza by Agrobacterium tumefaciens-mediated method. Plant Cell Tiss Org 88, 175-184.
[24] Young AJ, Lowe GM ( 2001). Antioxidant and prooxidant properties of carotenoids. Arch Biochem Biophys 385, 20-27.
Outlines

/