EXPERIMENTAL COMMUNICATIONS

Applicability of Evapotranspiration Simulation Models for Forest Ecosystems in Qianyanzhou

  • Ying Liu ,
  • Baozhang Chen ,
  • Jing Chen ,
  • Guang Xu
Expand
  • 1Beijing Forestry University, Beijing 100083, China
    2State Key Laboratory of Resources and Environment Information System, Institute of Geographical Science and Resources, Chinese Academy of Sciences, Beijing 100101, China
    3University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2015-03-31

  Accepted date: 2015-09-21

  Online published: 2016-03-31

Abstract

Using meteorological and evapotranspiration (ET) data acquired at the Eddy Covariance Flux tower in Qian- yanzhou, Jiangxi Province, for 2003 to 2007, we evaluated the applicability of 8 widely used evapotranspiration simulation models (Priestly-Taylor, Blaney-Criddle, Hargreaves-Samani, Jensen-Haise, Hamon, Turc, Makkink and Thornthwaite) for a forest ecosystem. Among these 8 models, the Priestly-Taylor model was the best (R=0.953) on a daily time scale, the Makkink model was the best (R=0.995) on a monthly scale, and the Thornthwaite model was the worst on a monthly scale (RMSE=15.559, MBE=13.436). The Jensen-Haise model failed in simulation of ET on both day and month scales. Partial correlation analysis of simulated ET against meteorological factors showed that the order of factors contributing to ET for the forest ecosystem was radiation>air temperature>surface pressure>wind speed>soil temperature>relative humidity>daytime length. Radiation was the most important driving factor for ET, which is consistent with the performance of radiation-based ET models (e.g., the Priestly-Taylor and Makkink models) being better than other models.

Cite this article

Ying Liu , Baozhang Chen , Jing Chen , Guang Xu . Applicability of Evapotranspiration Simulation Models for Forest Ecosystems in Qianyanzhou[J]. Chinese Bulletin of Botany, 2016 , 51(2) : 226 -234 . DOI: 10.11983/CBB15055

References

[1] 程根伟, 余新晓, 赵玉涛, 周杨明, 罗辑 (2003). 贡嘎山亚高山森林带蒸散特征模拟研究. 北京林业大学学报 25(1), 23-27.
[2] 杜加强, 熊珊珊, 刘成程, 郭杨, 舒俭民, 张林波 (2013). 黄河上游地区几种参考作物蒸散量计算方法的适用性比较. 干旱区地理 36, 831-840.
[3] 胡兴波, 芦新建, 董梅, 连利叶, 贺康宁 (2013). 简化参照作物蒸散量(ET0)计算公式在青海省高寒区的适用性分析. 西北农林科技大学学报(自然科学版) 41(11),201-208.
[4] 李菲菲, 饶良懿, 吕琨珑, 李会杰, 宋丹丹 (2012). Priestley- Taylor模型参数修正及在蒸散发估算中的应用. 浙江农林大学学报 30, 748-754.
[5] 李玉霖, 崔建垣, 张铜会 (2002). 参考作物蒸散量计算方法的比较研究. 中国沙漠 22, 372-376.
[6] 王昊, 许士国, 孙砳石 (2007). 扎龙湿地参照作物蒸散发估算的经验模型. 水科学进展 18, 246-251.
[7] 王梅, 王建波 (2005). 森林内气象因素和蒸散发的观测实验. 黑龙江水专学报 32(2), 21-22, 25.
[8] 杨贵军, 黄文江, 王纪华, 邢著荣 (2010). 多源多角度遥感数据反演森林叶面积指数方法. 植物学报 45, 566-578.
[9] 张晓琳, 熊立华, 林琳, 龙海峰 (2012). 五种潜在蒸散发公式在汉江流域的应用. 干旱区地理 35, 229-237.
[10] Allen RG, Pereira LS, Dirk R, Martin S (1998). Crop Evapotranspiration:Guidelines for Computing Crop Water Requirements. Rome: Natural Resources Management and Environment Press. pp. 56.
[11] Blaney HF, Criddle WD (1962). Determining consumptive use and irrigation water requirements. Technical Bull 25, 369-373.
[12] Bonan GB (2008). Ecological Climatology:Concepts and Applications. Cambridge: Cambridge University Press. pp. 31.
[13] Chen B, Ge Q, Fu D, Yu G, Sun X, Wang S, Wang H (2010). A data-model fusion approach for upscaling gross ecosystem productivity to the landscape scale based on remote sensing and flux footprint modelling. Biogeo- sciences 7, 2943-2958.
[14] Chen J, Chen BZ, Black TA, Innes JL, Wang GY, Kiely G, Hirano T, Wohlfahrt G (2013). Comparison of terres- trial evapotranspiration estimates using the mass transfer and Penman-Monteith equations in land surface models. J Geophys Res 118, 1715-1731.
[15] Douglas E, Jennifer MJ, Summer DS, Ram LR (2009). A comparison of models for estimating potential evapo- transpiration for Florida land cover types. J Hydrol 373, 366-376.
[16] Fisher JB, Whittaker RJ, Malhi Y (2011). ET come home: potential evapotranspiration in geographical ecology. Global Ecol Biogeogr 20, 1-18.
[17] Hargreaves GH, Samani ZA (1985). Reference crop evapo- transpiration from temperature. Appl Eng Agric 1, 96-99.
[18] Lu JB, Sun G, Mcnulty SG, Amatya DM (2005). A com- parison of six potential evapotranspiration methods for regional use in the southeastern US. J Am Water Works Assn 41, 621-633.
[19] Loukas A, Vasiliades L, Domenikiotis C, Dalezios NR (2005). Basin-wide actual evapotranspiration estimation using NOAA/AVHRR satellite data. Phys Chem Earth 30, 69-79.
[20] Pereira AR, Pruitt WO (2004). Adaptation of the Thorn- thwaite scheme for estimating daily reference evapora- tion. Agr Water Manage 66, 251-257.
[21] Priestly CHB, Taylor RJ (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Mon Weather Rev 100(2), 81-92.
[22] Trajkovic S, Kolakovic S (2009). Evaluation of reference evapotranspiration equations under humid conditions. Water Resour Manag 23, 3057-3067.
[23] Xu CY, Singh VP (2005). Evaluation of three compl- ementary relationship evapotranspiration models by water balance approach to estimate actual regional evapo- transpiration in different climatic regions. J Hydrol 308, 105-121.
[24] Zha TS, Barr AG, van der Kamp G, Black TA, McCaughey JH, Flanagan LB (2010). Interannual variation of evapo- transpiration from forest and grassland ecosystems in western Canada in relation to drought. Agric For Meteorol 150, 1476-1484.
Outlines

/