Isolation and Characterization of Regulators Involved in PHOT2-mediated Phototropism of Hypocotyls in Arabidopsis

Expand
  • State Key Laboratory of Cotton Biology, Key Laboratory of Plant Stress Biology, College of Life Sciences, Henan University, Kaifeng 475004, China

Received date: 2013-03-29

  Revised date: 2013-09-02

  Online published: 2014-06-03

Abstract

Previous research suggested that phototropins (PHOT1 and PHOT2) contribute redundantly to high-intensity blue light (HBL)-induced phototropic curvature of hypocotyls in Arabidopsis thaliana, which restricts our understanding of the mechanism of PHOT2 signal transduction. We used the phot1 mutant of A. thaliana with an ethylmethane sulphonate mutation to screen HBL-insensitive mutants, avoiding the disruption of PHOT1 activity, and successfully isolated the mutant p2sa1 (phototropin2 signaling associated1). Genetic analysis revealed that the mutant is controlled by a single recessive nuclear gene. Compared with phot1, the phot1p2sa1 mutant lost phototropism on irradiation with 100 μmol·m–2·s–1 unilateral blue light, which was consistent with phot1phot2. However, phot1p2sa1 showed chloroplast avoidance of HBL, which was not consistent with phot1phot2. P2SA1 may be located downstream of PHOT2 and involved in the regulation of the hypocotyl bending response to HBL.

Cite this article

Xiang Zhao, Lindan Wang, Yuanyuan Li, Qingping Zhao, Xiao Zhang . Isolation and Characterization of Regulators Involved in PHOT2-mediated Phototropism of Hypocotyls in Arabidopsis[J]. Chinese Bulletin of Botany, 2014 , 49(3) : 254 -261 . DOI: 10.3724/SP.J.1259.2014.00254

References

刘浩, 王棚涛, 安国勇, 周云, 樊丽娜 (2010). 拟南芥干旱相关突变体的远红外筛选及基因克隆. 植物学报 45, 220–225
Babourina O, Newman IA, Shabala S (2002). Blue light induced kinetics of H+ and Ca2+ fuxes in etiolated wild type and phototropin- mutant Arabidopsis seedlings. Proc Natl Acad Sci USA 99, 2433–2438.
Babourina O, Godfreg L, Voltchanskii K (2004). Changes in ion fluxes during phototropic bending of etilated oat coleoptiles. Ann Botany 94, 187–194.
Baum G, Long JC, Jenkins GI, et al (1999). Stimulation of the blue light phototropic receptor NPH1 causes a transient increase in cytosolic Ca2+. Proc Natl Acad Sci USA 96, 13554–13559.
Blakeslee JJ, Bandyopadhyay A, Peer WA, et al (2004). Relocalization of the PIN1 auxin efflux facilitator plays a role in phototropic responses. Plant Physiol 134, 28–31.
Carbonnel Md, Davis P, Roelfsema MRG, et al (2010). The Arabidopsis PSK2 protein is a phototropin signaling element that regulates leaf flattening and Leaf Positioning. Plant physiol 152, 1391–1405.
Demarsy E, Fankhauser C (2009). Higher plants use LOV to perceive blue light. Curr Opin Plant Biol 12, 69–74.
Folta KM, Lieg EJ, Durham T, et al (2003). Primary inhibition of hypocotyl growth and phototropism depend differently on phototropin-mediated increases in cytoplasmic calcium induced by blue light. Plant Physiol 133, 1464–1470.
Folta KM, Kaufman LS (2003). Phototropin 1 is required for high-fluence blue light-mediated mRNA destabilization. Plant Mol Biol 51, 609–618.
Friml J, Yang X, Michniewicz M, et al (2004). PINOID dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306, 862–865.
Haga K, Iino M (2006). Asymmetric distribution of auxin correlates with gravitropism and phototropism but not with autostraightening (autotropism) in pea epicotyls. J Exp Bot 57, 837–847.
Harada A, Shimazaki K (2007). Phototropins and blue light-dependent calcium signaling in higher plants. Photochem Photobiol 83, 102–111.
Huala E, Oeller PW, Liscum E, et al (1997). Arabidopsis NPH1: A protein kinase with a putative redox-sensing domain. Science 278, 2120–2123.
Inada S, Ohgishi M, Mayama T, et al (2004). RPT2 is a signal transducer involved in phototropic response and stomatal opening by association with phototropin 1 in Arabidopsis thaliana. Plant Cell 16, 887–896.
Inoue S, Kinoshita T, Matsumoto M, et al (2008). Blue light-induced autophosphorylation of phototropin is a primary step for signaling. Proc Natl Acad Sci USA 105, 5626–5631.
Inoue S, Takemiya A, Shimazaki K (2010). Phototropin signaling and stomatal opening as a model case. Curr Opin Plant Biol 13, 587–593.
Kagawa T, Sakai T, Suetsugu N, et al (2001). Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291, 2138–2141.
Kasahara M, Kagawa T, Oikawa K, et al (2002). Chloroplast avoidance movement reduces photodamage in plant. Nature 420, 829–832.
Kinoshita T, Doi M, Suetsugu N, et al (2001). phot1 and phot2 mediate blue light regulation of stomatal opening. Nature 414, 656–660.
Lariguet P, Schepens I, Hodgson D, et al (2006). PKS1 is a phototropin1 binding protein required for phototropism. Proc Natl Acad Sci USA 103, 10134–10139.
Michio D, Ayako S, Takashi E, et al (2004). A transgene encoding a blue-light receptor,phot1,restores blue-light responses in the Arabidopsis phot1phot2 double mutant. J Exp Bot 56, 517–523.
Motchoulski A, Liscum E (1999). Arabidopsis NPH3: A NPH1 photoreceptor-interacting protein essential for phototropism. Science 286, 961–964.
Ohgishi M, Saji K, Okada, Sakai T (2004). Functional analysis of each blue light receptor, cry1, cry2, phot1, and phot2, by using combinatorial multiple mutants in Arabidopsis. Proc Natl Acad Sci USA 101, 2223–2228.
Sakai T, Kagawa T, Kasahara M, et al (2001). Arabidopsis nph1 and npl1:blue light receptors that mediate both phototropism and chloroplast relocation. Proc Natl Acad Sci USA 98, 6969–6974.
Sakai T, Wada T, Ishiguro S, et al (2000). RPT2: A signal transducer of the phototropic response in Arabidopsis. Plant Cell 12, 225–236.
Stone BB, Stowe-Evans EL, Harper RM, et al (2008). Distruption in AUX1-dependent auxin influx alter hypocotyl phototropism in Arabidopsis. Mol Plant 1, 129–144.
Sullivan S, Thomson CE, Lamont DJ, et al (2008). In vivo phosphorylation site mapping and functional characterization of Arabidopsis phototropin1. Mol Plant 1, 178–194.
Takemiya A, Inoue S, Doi M, et al (2005). Phototropins promote plant growth in response to blue light in low light environments. Plant Cell 17, 1120–1127.
Tseng TS and Briggs WR (2010). The Arabidopsis rcn1-1 mutation impairs dephosphorylation of phot2, resulting in enhanced blue light responses. Plant Cell 22, 1-12.
Outlines

/