Research Advances in Antimetabolic and Photostable Analogues of Abscisic Acid

Expand
  • College of Sciences, China Agricultural University, Beijing 100193, China

Received date: 2012-05-31

  Revised date: 2012-08-26

  Online published: 2013-06-21

Supported by

Natural Science Foundation of China

Abstract

Abscisic acid is an important phytohormone that has many functions in higher plants, including seed germination, development and dormancy; regulating stomatal movement; and improving stress tolerance. However, two major drawbacks have restricted its application as a plant growth regulator for agrochemical use: It is easily metabolized in plants and this leads to concomitant loss of biological activity and geometry (2Z, 4E) of its 2, 4-pentadienoic acid moiety, which is crucial for its hormonal activities to be readily isomerized to biologically inactive (2E, 4E) isomers by light. Accordingly, synthesis of new abscisic acid analogues with higher activity and better photo-stability is important. This paper reviews research advances in the chemical and biological activities of antimetabolic and photostable analogs of abscisic acid.

Cite this article

Xiaoqiang Han, Yumei Xiao, Huizhe Lu, Zhaohai Qin . Research Advances in Antimetabolic and Photostable Analogues of Abscisic Acid[J]. Chinese Bulletin of Botany, 2013 , 48(3) : 329 -343 . DOI: 10.3724/SP.J.1259.2013.00329

References

Allinger N L, Sprague J T (1972). Conformational analysis. LXXXIV. Study of the structures and energies of some alkenes and cycloalkenes by the force field method. JACS 94, 5734-5747
Arai S, Todoroki Y, Ibaraki S, Naoe Y, Hirai N, Ohigashi H (1999). Synthesis and biological activity of 3′-chloro, -bromo, and -iodoabscisic acids, and biological activity of 3′-fluoro-8′-hydroxyabscisic acid. Phytochemistry 52, 1185-1193
Arbona V, Lopez-Climent M F, Mahouachi J, Perez-Clemente R M, Abrams S R, Gomez-Cadenas A (2006). Use of persistent analogs of abscisic acid as palliatives against salt-stress induced damage in citrus plants. J Plant Growth Regul 25, 1
Balko T W, Fields S C, Webster J D (1999). Total synthesis of (±)-8′-trifluoromethyl abscisic acid. Tetrahedron Lett 40, 6347-6351
Balsevich J J, Cutler A J, Lamb N, Friesen L J, Kurz E U, Perras M R, Abrams S R (1994). Response of cultured maize cells to (+)-abscisic acid, (-)-abscisic acid, and their metabolites. Plant Physiol 106, 135-142
Black S D (1987). In Advances in enzymology and related areas of molecular biology. New York : John Wiley&Sons, pp.35-87
Brabham D E, Biggs R H (1981). Cis-trans photoisomerization of abscisic acid. Photochemistry and photobiology 34, 33-37
Bruzzone S, Bodrato N, Usai C, Guida L, Moreschi I, Nano R, Antonioli B, Fruscione F, Magnone M, Scarfì S, De Flora A, Zocchi E (2008). Abscisic acid is an endogenous stimulator of insulin release from human pancreatic islets with cyclic ADP ribose as second messenger. J Biol Chem 283, 32188-32197
Bruzzone S, Moreschi I, Usai C, Guida L, Damonte G, Salis A, Scarfì S, Millo E, De Flora A and Zocchi E (2007). Abscisic acid is an endogenous cytokine in human granulocytes with cyclic ADP-ribose as second messenger. PNAS 104, 5759-5764
Chen S C, Mactaggart J M (1986). Abscisic acid analogs with a geometrically rigid conjugated acid side-chain. Agric Biol Chem 50, 1097-1100
Chiwocha S D S, Abrams S R, Ambrose S J, Cutler A J, Loewen M, Ross A R S, Kermode A R (2003). A method for profiling classes of plant hormones and their metabolites using liquid chromatography-electrospray ionization tandem mass spectrometry: an analysis of hormone regulation of thermodormancy of lettuce (Lactuca sativa L.) seeds. Plant J 35, 405-417
Cornforth J W, Milborrow B V, Ryback G (1965). Synthesis of (±)-Abscisin II. Nature 206,715-715.
Cutler A J, Rose P A, Squires T M (2000). Inhibitors of Abscisic Acid 8‘-Hydroxylase. Biochemistry 39, 13614-13624
Finkelstein R R, Gampla S S L, Rock C D (2002). Abscisic acid signaling in seeds and seedlings. Plant Cell 14, S15-S45
Flores A, Dorffling K (1990). A comparative study of the effects of abscisic acid and new terpenoid abscisic acid analogues on plant physiological processes. Plant Growth Regul 9, 133-139
Gusta L V, O′Conner J B, Reaney M (1988). Effect of low doses of gamma-hydroxybutyric acid on serotonin, noradrenaline, and dopamine concentrations in rat brain areas. Plant Growth Subst 13, 531-533
Inoue T, Oritani T (2000). The primary structure of the subunit in Bacillus thermoamyloliquefaciens KP1071 molecular weight 540,000 homohexameric alpha-glucosidase II belonging to the glycosyl hydrolase family 31. Biosci Biotech Biochem 64,1071-1074
Kim B T, Min Y K, Asami T (1997). Simple aromatic amines from justicia gendarussa. 13C NMR spectra of the bases and their analogues Tetrahedron Lett 38, 1797-1802
Kim B T, Min Y K, Asami T, Park N K, Kwon O Y, Cho K Y, Yoshida S (1999). 2-Fluoroabscisic Acid Analogues:? Their Synthesis and Biological Activities. J Agric Food Chem 47, 313-317
Kim B T, Mina Y K, Asamic T, Parka N K, Jeongb I H, Choa K Y, Yoshida S (1995). Synthesis and biological activities of new fluorinated abscisic acid. Bioorg Med Chem Let 5, 275-278
Kiyota H, Masuda T, Chiba J, Oritani T (1996). 2-Fluoro and 2-methoxycarbonyl epoxy-a-ionylideneacetic acids as abscisic analog. Biosci Biotech Biochem 60,1076-1080
Kiyota H, Oritani T, Kuwahara S (2005). Synthesis and Biological Evaluation of Abscisic Acid, Jasmonic Acid, and Its Analogs. ACS Symposium Series (New Discoveries in Agrochemicals) 892, 246-254.
Kushiro T, Okamoto M, Nakabayashi K, Yamagishi K, Kitamura S, Asami T, Hirai N, Koshiba T, Kamiya Y, Nambara E (2004). The Arabidopsis cytochrome P450 CYP707A encodes ABA 8'-hydroxylases: key enzymes in ABA catabolism. EMBO J 23, 1647-1656
Lamb N, Wahab N, Rose P A, Shaw A C, Abrams S R, Cutler A J, Smith P J, Gusta L V, Ewan B (1996). Synthesis, metabolism and biological activity of a deuterated analogue of the plant hormone S-(+)-abscisic acid. Phytochemistry 41, 23-28
Lenton J R, Perry V M, Saunders P F (1971). Abscisic acid associated with wilting in dwarf and tall Pisum sativum. Planta(Berl.) pp.272-276
Magnone M, Bruzzone S, Guida L, Damonte G, Millo E, Scarfì S, Usai C, Sturla L, Palombo D, De Flora A and Zocchi E (2009). Abscisic acid released by human monocytes activates monocytes and vascular smooth muscle cell responses involved in atherogenesis. J Biol Chem 284, 17808-17818
Magnone M, Sturla L, Jacchetti E, Scarfi S, Bruzzone S, Usai C, Guida L, Salis A, Damonte G, De Flora A, Zocchi E (2012). Functional blockade of the voltage-gated potassium channel Kv1.3 mediates reversion of T effector to central memory lymphocytes through SMAD3/p21 signaling. J Biol Chem 287, 1261-1268
Milborrow B V (1983). History and introduction in abscisic acid, ed. By Addicot, F. T. New York : Praeger Publisher, pp.79-112
Mliborrow B V (1966). The effects of syntheticdl-dormin (Abscisin II) on the growth of the oat mesocotyl. Planta(Berl.) 70, 155-171
Mliborrow B V (1970). The Metabolism of Abscisic Acid. J Exp Botan 21, 17-29
Moreschi I, Ferraris C, Verderio C, Basile G, Bruzzone S, Scarfì S, De Flora A and Zocchi E (2009). Abscisic acid activates the murine microglial cell Line N9 through the second messenger cyclic ADP-ribose. J Biol Chem 284, 14777-14787
Nambara E, Marion-Poll A (2005). Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56, 165-185
Nyangulu J M.; Nelson K M.; Rose P A.; Gai Y.; Loewen M.; Lougheed B.; Quail J W.; Culter A J.; Abrams S R (2006). Synthesis and biological activity of tetralone abscisic acid analogues. Org Biomol Chem 4, 1400-1412
Ohkuma K (1966). Synthesis of some analogs of abscisin II. Agric Biol Chem 30, 434-437
Ohkuma K, Lyon J L, Addicott F T, Smith O E (1963). Abscisin II, an abscission-accelerating substance from young cotton fruit. Science 142, 1592-1593
Okamoto M, Kushiro T, Jikumaru Y, Abrams S R (2011). ABA 9′-hydroxylation is catalyzed by CYP707A in Arabidopsis. Phytochemistry 72, 717-722
Ortiz de Montellano P R (1985). In Bioactivation of Foreign Compounds, Academic Press, Orlando, FL. pp.121-155
Ortiz de Montellano P R and Correia M A (1983). Suicidal destruction of cytochrome P-450 during oxidative drug metabolism. Annu Rev Pharmacol Toxicol 23, 481-503
Perras M, Rose P A, Pass E W (1997). Defining steric, electronic and conformational requirements of carrier-mediated uptake of abscisic acid in barley suspension culture cells. Phytochemistry 46, 215-222
Plancher B (1979). Note on the isomerization of abscisic acid by irradiation with UV light. Gartenbauwissenschaft 44, 184-191
Rose P A, Cutler A J, Irvine N M, Shaw A C, Squires T M, Loewen M K, Abrams S R (1997a). 8'-Acetylene ABA: an irreversible inhibitor of ABA 8'-hydroxylase. Bioorg Med Chem Lett 7, 2543-2546
Rose P A, Cutler A J, Trvine N M, Shaw A C, Squires T M, Loewen M K, Abrams S R (1997b). 8’-Methylene Abscisic Acid. Plant Physiol 114, 89-97
Rose P A, Lei B, Shaw A C, Barton D, Walker-Simmons M K, Abrams S R (1996). Probing the role of the hydroxyl group of ABA: Analogues with a methyl ether AT C-1. Phytochemistry 41, 1251-1258
Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004). Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134, 1439-1449
Sauter A, Abrams S R, Hartung W (2002). Structural requirements of abscisic acid (ABA) and its impact on water flow during radial transport of ABA analogues through maize roots. J Plant Growth Regul 21, 50-59
Schwalle VH W, Klaska K H, Jarchow O (1977). Die Kristall- und Molekülstruktur von (R,S)-cis,trans-Abscisins?ure: 5-(1-Hydroxy-2,6,6-trimethyl-4-oxo-2-cyclohexen-1-yl)-3-methyl-2,4- pentadiens?ure. Acta Crystallogr. 33, 2218-2224.
Shingo M, Makoto S, Toru Y. JP 05001001A, 1993
Smet I D, Zhang H M, Inze D, Beeckman T (2006). A novel role for abscisic acid emerges from underground. TRENDS in Plant Science 11, 434-439
Smith T R, Clark A J, Clarkson G J, Taylor P C, Marsh A (2006). Concise enantioselective synthesis of abscisic acid and a new analogue. Org Biomol Chem 4, 4186-4192
Sono M, Roach M P, Coulter E D, Dawson J H (1996). Heme-containing oxygenases. Chem Rev 96, 2841-2888
Sturla L, Fresia C, Guida L, Bruzzone S, Scarfì S, Fruscione F, Magnone M, Millo M, Basile G, Grozio A, Jacchetti E, Allegretti M, De Flora A and Zocchi E (2009). LANCL2 is necessary for abscisic acid binding and signaling in human granulocytes and in rat insulinoma cells. J Biol Chem 284, 28045-28057
Todoroki Y, Hirai N, Koshimizu K (1994). 8'- and 9'-Methoxyabscisic acids as antimetabolic analogs of abscisic acid. Biosci Biotech Biochem 58, 707-715
Todoroki Y, Hirai N, Koshimizu K (1995a). 8′,8′-Difluoro- and 8′,8′,8′-trifluoroabscisic acids as highly potent, long-lasting analogues of abscisic acid. Phytochemistry. 38, 561-568
Todoroki Y, Hirai N, Koshimizu K (1995b). Synthesis and biological activity of 1′-deoxy-1′-fluoro- and 8′-fluoroabscisic acids. Phytochemistry. 40, 633-641
Todoroki Y, Hirai N, Ohigashi H (1995c). Synthesis, biological activity and metabolism of (S)-(+)-3′-Fluoroabscisic acid. Tetrahedron 51, 6911-6926
Todoroki Y, Nakano S, Arai S, Hirai N, Ohigashi H (1997a). Synthesis and biological activities of 8'-methylene- and 8'-methylidyneabscisic acids. Biosci Biotech Biochem 61, 2043-2045
Todoroki Y, Nakano N, Hirai N, Mitsui T, Ohigashi H (1997b). Synthesis, biological activity, and metabolism of 8',8',8'-trideuteroabscisic acid. Biosci Biotech Biochem 61,1872-1876
Todoroki Y, Nakano S, Hirai N, Ohigashi H (1996). Ring conformational requirement for biological activity of abscisic acid probed by the cyclopropane analogues. Tetrahedron 52, 8081-8098
Todoroki Y, Sawada M, Matsumoto M, Tsukada S, Ueno K, Isaka M, Owaki M, Hirai N (2004). Metabolism of 5′α,8′-cycloabscisic acid, a highly potent and long-lasting abscisic acid analogue, in radish seedlings. Bioorg Med Chem 12, 363-370
Tsavkelova E, Klimove S, Cherdyntseva T, Netrusov A (2006). Hormones and hormone-like substances of microorganisms: A review. Applied Biochemistry and Microbiology 42, 229-235
Ueda H, Tanaka J (1977). The crystal and molecular structure of dl-2-cis-4-trans-abscisic acid. BCSJ 50, 1506-1509
Ueno K, Araki Y, Hirai N, Saito S, Mizutani M, Sakata K, Todoroki Y (2005a). Differences between the structural requirements for ABA 8′-hydroxylase inhibition and for ABA activity. Bioorg Med Chem 13, 3359-3370
Ueno K, Yoneyama H, Saito S, Mizutani M, Sakata K, Hirai N, Todoroki Y (2005b). A lead compound for the development of ABA 8′-hydroxylase inhibitors. Bioorg Med Chem Let 15, 5226-5229
Ward J L, Beale M H (1995). Dihydroabscisic alcohol from Averrhoa carambola fruit Phytochemistry 36, 811-812
Zaharia L I, Gay Y, Nelson K M, Ambrose S J, Abrams S R (2004). Oxidation of 8′-hydroxy abscisic acid in black mexican sweet maize cell suspension cultures. Phytochemistry 65, 3199-3209
Zaharia L I, Walker-Simmon M K, Rodríguez C N, Abrams S R (2005). Chemistry of abscisic acid, abscisic acid catabolites and analogs. J Plant Growth Regul 24, 274-284
Zeevaart J A D, Creelman R A (1988). Metabolism and physiology of abscisic acid. Annu Rev Plant Biol 39, 439-473
Zeevaart J A D, Hooykaas P J J, Hall M A, Libbenga K R (1999). Abscisic acid metabolism and its regulation. Elsevier Science pp.189-207
Zhou R, Cutler A J, Ambrose S J, Galka M M, Nelson K M, Squires T M, Loewen M K, Jadhav A S, Ross A R, Taylor D C, Abrams S R (2004). A new abscisic acid catabolic pathway. Plant Physiol 134, 361-369
Zocchi E, Basile G, Cerrano C, Bavestrello G, Giovine M, Bruzzone S, Guida L, Carpaneto A, Magrassi R, Usai C (2003). ABA- and cADPR-mediated effects on respiration and filtration downstream of the temperature-signaling cascade in sponges. J Cell Sci 116, 629-636
Zocchi E, Carpaneto A, Cerrano C, Bavestrello G, Giovine M, Bruzzone S, Guida L, Franco L and Usai C (2001). The temperature-signaling cascade in sponges involves a heat-gated cation channel, abscisic acid, and cyclic ADP-ribose. PNAS 98, 14859-14864
范锦龙(2011). 顺式2, 3-环丙烷化脱落酸类似物的合成、光异构化以及生物活性评价.博士论文. 北京:中国农业大学.
刘文剑(2007). 2,3-环丙烷化脱落酸类似物的合成、光稳定性以及生物活性评价. 博士论文. 北京:中国农业大学.
Outlines

/