Protoplast Isolation and Establishment of Transient Expression System of Tripterygium wilfordii Suspension Culture Cells
Received date: 2016-08-21
Accepted date: 2017-01-10
Online published: 2017-01-10
We aimed to find the best protoplast extraction conditions with Tripterygium wilfordii suspension culture cells and establish an efficient transient expression system. Key factors in protoplast isolation, such as concentration of enzymes, time of enzymolysis, osmotic pressure and centrifugation speed, were studied. PEG mediation was used to transfer the GFP gene into protoplasts. The optimal extraction system was with cellulose R-10 2.0%, pectinase Y-23 0.5%, macerozyme R-10 0.5%, 0.6 mol?L-1 mannitol. The suitable enzymolysis time was 10 h, and the optimal centrifugation speed was 67 ×g. Under LSCM, the protoplast emitted green fluorescence after transforming the plasmid encoding green fluorescent protein into it. We revealed the optional conditions to isolate protoplast of T. wilfordii suspension cells and established the transient transformation system; it laid a foundation for further study on the functional genes and syn- thetic biology of T. wilfordii.
Hu Tianyuan, Wang Rui, Chen Shang, Ma Baowei, Gao Wei, Huang Luqi . Protoplast Isolation and Establishment of Transient Expression System of Tripterygium wilfordii Suspension Culture Cells[J]. Chinese Bulletin of Botany, 2017 , 52(6) : 774 -782 . DOI: 10.11983/CBB16171
[1] | 段炼, 钱君, 郭小雨, 朱英 (2014). 一种快速高效的水稻原生质体制备和转化方法的建立. 植物生理学报 50, 351-357. |
[2] | 李妮娜, 丁林云, 张志远, 郭旺珍 (2014). 棉花叶肉原生质体分离及目标基因瞬时表达体系的建立. 作物学报 40, 231-239. |
[3] | 刘凡, 赵泓, 秦帆 (2006). 结球白菜下胚轴原生质体培养及其体细胞胚植株再生. 植物学通报 23, 275-280. |
[4] | 刘继红, 邓秀新 (1999). 植物原生质体非对称融合及其在育种上的应用. 生命科学 11, 88-91. |
[5] | 张良波, 李培旺, 黄振, 李昌珠 (2011). 木本植物原生质体制备体系的研究进展. 中南林业科技大学学报 31(8), 102-107. |
[6] | 朱楠, 刘俊, 张馨宇, 董娟娥 (2014). 丹参悬浮培养细胞原生质体的制备和活力检测. 生物工程学报 30, 1612-1621. |
[7] | Chugh R, Sangwan V, Patil SP, Dudeja V, Dawra RK, Banerjee S, Schumacher RJ, Blazar BR, Georg GI, Vickers SM, Saluja AK (2012). A preclinical evaluation of minnelide as a therapeutic agent against pancreatic cancer. Sci Transl Med 4, 156ra139. |
[8] | Cocking EC (1960). A method for the isolation of plant protoplasts and vacuoles.Nature 187, 927-929. |
[9] | Duarte P, Ribeiro D, Carqueijeiro I, Bettencourt S, Sottomayor M (2016). Protoplast transformation as a plant- transferable transient expression system.Methods Mol Biol 1405, 137. |
[10] | Gilroy S, Jones RL (1992). Gibberellic acid and abscisic acid coordinately regulate cytoplasmic calcium and secre- tory activity in barley aleurone protoplasts.Proc Natl Acad Sci USA 89, 3591-3595. |
[11] | Guo ZJ, Kallus S, Akiyoshi K, Sunamoto J (2006). Artificial cell wall for plant protoplast. Coating of plasma membrane with hydrophobized polysaccharides.Chem Lett 31, 415-416. |
[12] | Knight MR, Campbell AK, Smith SM, Trewavas AJ (1991). Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium.Nature 352, 524-526. |
[13] | Liu JL, Lee J, Salazar Hernandez MA, Mazitschek R, Ozcan U (2015). Treatment of obesity with celastrol.Cell 161, 999-1011. |
[14] | Lu L, Li FQ, Wang XM (2010). Novel anti-inflammatory and neuroprotective agents for Parkinson’s disease.CNS Neu- rol Disord Drug Targets 9, 232-240. |
[15] | Maas C, Werr W (1989). Mechanism and optimized conditions for PEG mediated DNA transfection into plant protoplasts.Plant Cell Rep 8, 148-151. |
[16] | Nagata T, Takebe I (1970). Cell wall regeneration and cell division in isolated tobacco mesophyll protoplasts.Planta 92, 301-308. |
[17] | Sheen J (2001). Signal transduction in maize and Arabidopsis mesophyll protoplasts.Plant Physiol 127, 1466-1475. |
[18] | Su P, Tong YR, Cheng QQ, Hu YT, Zhang M, Yang J, Teng QZ, Gao W, Huang LQ (2016). Functional characterization of ent-copalyl diphosphate synthase, kaurene synthase and kaurene oxidase in the Salvia miltiorrhiza gibberellin biosynthetic pathway. Sci Rep 6, 23057. |
[19] | Titov DV, Gilman B, He QL, Bhat S, Low WK, Dang YJ, Smeaton M, Demain AL, Miller PS, Kugel JF, Goodrich JA, Liu JO (2011). XPB, a subunit of TFIIH, is a target of the natural product triptolide.Nat Chem Biol 7, 182-188. |
[20] | Tudses N, Premjet S, Premjet D (2015). Establishment of method for protoplast fusion with peg-mediated between jatropha curcas l. and ricinus communis l.Int J Life Sci Biotech Pharm Res 4, 50-56. |
[21] | Wang X, Liang XB, Li FQ, Zhou HF, Liu XY, Wang JJ, Wang XM (2008). Therapeutic strategies for Parkinson’s disease: the ancient meets the future-traditional Chinese herbal medicine, electroacupuncture, gene therapy and stem cells.Neurochem Res 33, 1956-1963. |
[22] | Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015). DNA-free genome editing in plants with preassembled CRISPR- Cas9 ribonucleoproteins. Nat Biotechnol 33, 1162-1164. |
[23] | Zhang M, Su P, Zhou YJ, Wang XJ, Zhao YJ, Liu YJ, Tong YR, Hu TY, Huang LQ, Gao W (2015). Identification of geranylgeranyl diphosphate synthase genes from Tripterygium wilfordii. Plant Cell Rep 34, 2179-2188. |
[24] | Zhao YJ, Chen X, Zhang M, Su P, Liu YJ, Tong YR, Wang XJ, Huang LQ, Gao W (2015). Molecular cloning and characterisation of farnesyl pyrophosphate synthase from Tripterygium wilfordii. PLoS One 10, r0125415. |
[25] | Zhou ZL, Yang YX, Ding J, Li YC, Miao ZH (2012). Triptolide: structural modifications, structure-activity relations- hips, bioactivities, clinical development and mechanisms.Nat Prod Rep 29, 457-475. |
/
〈 | 〉 |