Response of Flowering Phenology of Viburnum to Abnormal Meteorological Events

Expand
  • 1Northwest Agriculture and Forestry University, Yangling 712100, China
    2Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    3Beijing Meteorological Observatory, Beijing 100089, China

# Co-first authors

Received date: 2016-12-23

  Accepted date: 2017-03-06

  Online published: 2017-05-27

Abstract

Abnormal meteorological events occur frequently under global climate change. As another unusual meteorological event, a warm-dry climate occurred in North China in spring 2016 after the extreme cold-wet weather in spring 2010. Phenological observations of the flowering phenology of Viburnum from 2009 to 2016 showed that flowering onset was advanced in the warm-dry spring in 2016, but flowering duration was never shortened over the observation years; and the variance in threshold on flowering onset, active accumulated temperature and flowering duration of species with narrow altitude spanning, for V. macrocephalum and V. opulus, for example, were very wide, whereas species with large altitude spanning, such as V. prunifolium, V. lantana and V. carlesii, presented limited plasticity on flowering onset, active accumulated temperature and flowering duration; moreover, the relative flowering onset among these 3 species did not change, whatever meteorologically occurred in spring over several years. As well, the allocation of assimilation on shoots increased by significantly increased shoot diameter and simultaneously increased leaf growth rate as compared with the normal year. However, leaves became much thinner than the normal year. The assimilation was allocated more to those leaves far from fruits experiencing a warm-dry event. Study of the flowering phenology responsive to extreme meteorological events at a given hierarchy can reveal an environmental plasticity of flowering during extreme climate change and provide basic information for classical phenological research.

Cite this article

Congcong Xu, Hongxia Cui, Lei Shi, Fei Xia, Zhaoyin Yin, Deshan Zhang . Response of Flowering Phenology of Viburnum to Abnormal Meteorological Events[J]. Chinese Bulletin of Botany, 2017 , 52(3) : 297 -306 . DOI: 10.11983/CBB16256

References

[1] 曹书敏, 杨俊明, 赵秋芳, 孟凡虎, 王国兵, 宋双双 (2012). 园林树木花期性状与有效积温的关系研究. 西部林业科学 41, 35-41.
[2] 常兆丰, 韩福贵, 仲生年 (2012). 民勤荒漠区草场植被对气温和降水的响应. 草业科学 21, 213-222.
[3] 陈彬彬, 郑有飞, 赵国强, 陈怀亮 (2007). 河南林州植物物候变化特征及其原因分析. 植物资源与环境学报 16, 12-17.
[4] 陈莉, 石雷, 崔洪霞, 张爱英, 张德山, 王玲, 夏菲 (2012). 荚蒾属植物花期物候及生长对引种地年际气候波动的响应. 植物学报 47, 645-653.
[5] 戴攀峰, 谭敦炎 (2011). 雪莲的开花生物学特性及其生态适应意义. 植物生态学报 35, 56-65.
[6] 丁德平, 张爱英, 韩超, 任国玉, 谢庄 (2010). 2009年11月北京极端低温和强降水事件分析. 气候与环境研究 15, 395-404.
[7] 丁抗抗, 高庆先, 李辑 (2010). 我国植物物候变化及对气候变化的响应综述. 安徽农业科学 38, 7414-7417.
[8] 何东, 彭尽晖, 邱波, 彭亮, 胡凌雪, 胡瑶, 赵盈盈 (2013). 温度对观赏植物花芽分化影响的研究进展. 中国园艺文摘 3, 40-42.
[9] 李琪, 薛雪, 李剑萍, 王连喜 (2010). 1981-2006年固原市榆树自然物候对气候变化的响应. 安徽农业科学 38, 3552-3555.
[10] 梁艳, 干珠扎布, 张伟娜, 高清竹, 旦久罗布, 西饶卓玛, 白马玉珍 (2014). 气候变化对中国草原生态系统影响研究综述. 中国农业科技导报 16, 1-8.
[11] 廖梅英 (2012). 气候变化对武汉木本植物物候期的影响. 湖北林业科学 176, 35-37.
[12] 刘克长, 刘怀屺, 张继祥, 任宗兴 (1991). 牡丹花前温度指标的确定与花期预报. 山东农业大学学报 22, 397-402.
[13] 刘颖慧, 贾海坤, 高琼 (2006). 植物同化物分配及其模型研究综述. 生态学报 26, 1981-1992.
[14] 陆佩玲, 于强, 贺庆棠 (2006). 植物物候对气候变化的响应. 生态学报 26, 923-929.
[15] 毛丽萍, 李亚灵, 温祥珍 (2012). 苗期昼夜温差对番茄产量形成因子的影响分析. 农业工程学报 28, 172-177.
[16] 潘红丽, 李迈和, 蔡小虎, 吴杰, 杜忠, 刘兴良 (2009). 海拔梯度上的植物生长与生理生态特性. 生态环境学报 18, 722-730.
[17] 祁如英 (2006). 木本植物物候变化及其对气候变化的响应. 青海气象 2, 27-31.
[18] 孙俊, 章镇, 盛炳成, 孙其宝 (2004). 夏季叶施15N-硫铵果梅对15N的吸收与运转. 中国农学通报 20, 154-156.
[19] 王静, 常青, 柳冬良 (2014). 北京城市化进程中早春草本植物开花物候期的变化响应. 生态学报 34, 6701-6710.
[20] 王连喜, 陈怀亮, 李琪, 余卫东 (2010). 植物物候与气候研究进展. 生态学报 30, 447-454.
[21] 王素萍, 王闪闪, 冯建英 (2016). 2016年春季全国干旱状况及其影响与成因. 干旱气象 34, 584-589.
[22] 王文峰 (2016). 2016年春季气候对农业生产的影响. 中国农业气象 37, 376-377.
[23] 王言鑫 (2015). 南京市木本植物花期对气候变化的响应研究. 硕士论文. 南京: 南京林业大学. pp. 17-31.
[24] 王遵娅, 曾红玲, 高歌, 陈峪, 司东, 刘波 (2011). 2010年中国气候概况. 气象 37, 439-445.
[25] 徐炳声 (2011). 中国植物志(第72卷). 北京: 科学出版社. pp. 13-104.
[26] 杨锐, 张博睿, 王玲玲, 杨建军, 苏文华, 张光飞, 杨波, 周睿 (2015). 元谋干热河谷植物功能性状组合的海拔梯度响应. 生态环境学报 24, 49-56.
[27] 张宝成, 白艳芬 (2015). 花期物候对气候变化的响应进展. 北方园艺 22, 190-194.
[28] 张往祥, 魏宏亮, 江志华, 曹福亮, 汤庚国 (2014). 观赏海棠品种群的花期物候特征研究. 园艺学报 41, 713-725.
[29] 张亚杰, 冯玉龙 (2004). 不同光强下生长的两种榕树叶片光合能力与比叶重、氮含量及分配的关系. 植物生理与分子生物学学报 30, 269-276.
[30] Abu-Asab MS, Peterson PM, Shetler SG, Orli SS (2001). Earlier plant flowering in spring as a response to global warming in the Washington, DC, area.Biodivers Conserv 10, 597-612.
[31] Ansquer P, Khaled RAH, Cruz P, Theau JP, Therond O, Duru M (2008). Characterizing and predicting plant phe- nology in species-rich grasslands.Grass Forage Sci 64, 57-70.
[32] Beaubien E, Hamann A (2011). Spring flowering response to climate change between 1936 and 2006 in Alberta, Canada.Bioscience 61, 514-524.
[33] Beaubien EG, Freeland HJ (2000). Spring phenology trends in Alberta, Canada: links to ocean temperature.Int J Biometeorol 44, 53-59.
[34] Chung U, Jung JE, Seo HC, Yun JI (2009). Using urban effect corrected temperature data and a tree phenology model to project geographical shift of cherry flowering date in South Korea.Clim Change 93, 447-463.
[35] Crimmins TM, Crimmins MA, Bertelsen CD (2010). Complex responses to climate drivers in onset of spring flowering across a semi-arid elevation gradient.J Ecol 98, 1042-1051.
[36] Feng YL, Fu GL, Zheng YL (2008). Specific leaf area relates to the differences in leaf construction cost, photosynthesis, nitrogen allocation, and use efficiencies bet- ween invasive and noninvasive alien congeners.Planta 228, 383-390.
[37] Hoch G (2005). Fruit-bearing branchlets are carbon auto- nomous in mature broad-leaved temperate forest trees.Plant Cell Environ 28, 651-659.
[38] Matthews ER, Mazer SJ (2016). Historical changes in flowering phenology are governed by temperature × precipitation interactions in a widespread perennial herb in wes- tern North America.New Phytol 210, 157-167.
[39] Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-KÜbler K, Bissolli P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donnelly A, Filella Y, Jatcza K, Måge F, Mestre A, Nordli O, Penuelas J, Pirinen P, Remisova V, Schei- finger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006). European phenological response to climate change matches the warming pattern.Glob Chang Biol 12, 1969-1976.
[40] Newell EA (1991). Direct and delayed costs of reproduction in Aesculus-Californica. J Ecol 79, 365-378.
[41] Niu SL, Luo YQ, Li DJ, Cao SH, Xia JY, Li JW, Smith MD (2014). Plant growth and mortality under climatic ext- remes: an overview.Environ Exp Bot 98, 13-19.
[42] Richardson BA, Chaney L, Shaw NL, Still SM (2017). Will phenotypic plasticity affecting flowering phenology keep pace with climate change?Glob Chang Biol 23, 2499-2508.
[43] Siegmund JF, Wiedermann M, Donges JF, Donner RV (2016). Impact of temperature and precipitation extremes on the flowering dates of four German wildlife shrub species.Biogeosciences 13, 5541-5555.
[44] Wheeler TR, Craufurd PQ, Ellis RH, Porter JR, Prasad PVV (2000). Temperature variability and the yield of annual crops.Agric Ecosyst Environ 82, 159-167.
[45] Wheeler TR, HongTD, Ellis RH, Batts GR, Morison JIL, Hadley P (1996). The duration and rate of grain growth, and harvest index, of wheat (Triticum aestivum L.) in response to temperature and CO2. J Exp Bot 47, 623-630.
[46] Winkworth RC, Donoghue MJ (2004). Viburnum phylogeny: evidence from the duplicated nuclear gene GBSSI. Mol Phylogenet Evol 33, 109-126.
[47] Yang QE, Hong DY, Malécot V, Boufford DE (2011). Flora of China, Vol. 19. Beijng: Science Press. pp. 570-611.
Outlines

/

674-3466/bottom_en.htm"-->