Seasonal Dynamics in Soil Content of Effective Potassium for Different Ages of Larix principis-rupprechtii in the Northern Foot of the Qinling Mountains
? These authors contributed equally to this paper
Received date: 2014-09-01
Accepted date: 2015-03-20
Online published: 2015-05-07
The soil content of available K for 5a, 10a, 20a, 30a, 40a Larix principis-rupprechtii in the northern foot of the Qinling Mountains was analyzed from May to October to determine the seasonal dynamics in content of available K for L. principis-rupprechtii at different ages. The available K content at 0 to 20 cm in different months for different ages of L. principis-rupprechtii was higher than at the soil depth of 20 to 40 cm’ and 40 to 60 cm’. The soil content of available K at soil depth 0 to 20 cm in different months for different tree ages significantly differed (P<0.05). The soil content of effective K and slow-K at 0 to 20 cm in different months for different tree ages was higher than at the soil depth of 20 to 40 cm’ and 40 to 60 cm’. The soil content of effective K and slow-K at soil depth 0 to 20 cm in different months for different tree ages did not differ (P<0.05). At soil depth 0 to 20 cm, the soil content of available K at different tree ages had a parabolic variation, increasing first and then decreasing, whereas that of effective K and slow-K at different tree ages had a decreasing variation; the soil content of effective K and slow-K of 40a L. principis-rupprechtii was higher than at other ages. The soil content of available K and slow-K for different ages of L. principis-rupprechtii without fertilization reached the middle and high levels, so the soil content of effective K was adequate.
Qincheng Chen, Fuli Xu, Weiling Wang, Yun Lin . Seasonal Dynamics in Soil Content of Effective Potassium for Different Ages of Larix principis-rupprechtii in the Northern Foot of the Qinling Mountains[J]. Chinese Bulletin of Botany, 2015 , 50(4) : 482 -489 . DOI: 10.11983/CBB14161
1 | 鲍士旦 (2000). 土壤农化分析(第3版). 北京: 中国农业出版社. pp.107-110. |
2 | 程明芳, 金继运, 黄绍文 (1999). 我国北方主要土壤非交换性钾释放速率的研究. 土壤学报 36, 218-224. |
3 | 丛日环, 李小坤, 鲁剑巍 (2007). 土壤钾素转化的影响因素及其研究进展. 华中农业大学学报 26, 907-913. |
4 | 杜立宇, 李延东, 梁成华 (2008). 不同施肥处理对保护地土壤非交换性钾释放能力的影响. 河南农业科学 (6), 54-57. |
5 | 封克, 殷士学, 张山泉 (1992). 矿物钾在作物营养中的意义. 土壤通报 23(2), 58-60. |
6 | 葛晓改, 肖文发, 曾立雄, 黄志霖, 付甜, 封晓辉 (2012). 不同林龄马尾松凋落物基质质量与土壤养分的关系. 生态学报 32, 852-862. |
7 | 雷瑞德, 党坤良, 张硕新, 谭芳林 (1997). 秦岭南坡中山地带华北落叶松人工林对土壤的影响. 林业科学 33, 463-470. |
8 | 李荣华, 汪思龙, 王清奎 (2008). 不同林龄马尾松针叶凋落前后养分含量及回收特征. 应用生态学报 19, 1443-1447. |
9 | 梁建萍, 牛远, 谢敬斯, 张建达 (2007). 不同海拔华北落叶松针叶三种抗氧化酶活性与光合色素含量. 应用生态学报 18, 1414-1419. |
10 | 梁成华, 魏丽萍, 罗磊 (2002). 土壤固钾与释钾机制研究进展. 地球科学进展 17, 679-684. |
11 | 陆景陵 (2003). 植物营养学(上册). 北京: 中国农业大学出版社. pp. 48-59. |
12 | 马炜, 孙玉军, 郭孝玉, 巨文珍, 穆景森 (2010). 不同林龄长白落叶松人工林碳储量. 生态学报 30, 4659-4667. |
13 | 毛瑢, 崔强, 赵琼, 艾桂艳, 李禄军, 曾德慧 (2009). 不同林龄杨树农田防护林土壤微生物生物量碳、氮和微生物活性. 应用生态学报 20, 2079-2084. |
14 | 庞夙, 陶晓秋, 张英, 王勇, 李廷轩 (2012). 会理县新植烟区土壤速效钾含量空间变异特征及其影响因子. 中国烟草科学 33, 32-36. |
15 | 隋玉龙, 陈丽艳, 马莉, 仝小宛 (2009). 不同林龄日本落叶松与华北落叶松生长的比较. 河北林果研究 24, 362-365. |
16 | 谭德水, 金继运, 黄绍文 (2008a). 长期施钾与秸秆还田对西北地区不同种植制度下作物产量及土壤钾素的影响. 植物营养与肥料学报 14, 886-893. |
17 | 谭德水, 金继运, 黄绍文, 高伟 (2008b). 长期施钾与秸秆还田对华北潮土和褐土区作物产量及土壤钾素的影响. 植物营养与肥料学报 14, 106-112. |
18 | 王筝, 鲁剑巍, 张文君, 李小坤 (2012). 田间土壤钾素有效性影响因素及其评估. 土壤 44, 898-904. |
19 | 王志勇, 白由路, 杨俐苹, 卢艳丽, 王磊, 王贺 (2012). 低土壤肥力下施钾和秸秆还田对作物产量及土壤钾素平衡的影响. 植物营养与肥料学报 18, 900-906. |
20 | 吴鹏飞, 朱波, 刘世荣, 王小国 (2008). 不同林龄桤-柏混交林生态系统的碳储量及其分配. 应用生态学报 19, 1419-1424. |
21 | 徐国华, 鲍士旦, 史瑞和 (1991). 土壤钾素供应状况的研究IV. 禾谷类及豆类作物对土壤层间钾的利用. 南京农业大学学报 14(2), 47-52. |
22 | 翟洪波, 呼和牧仁, 周梅, 李良, 邵仁旭, 姚凯 (2010). 不同年龄华北落叶松光合、蒸腾生理生态特征的研究. 内蒙古农业大学学报 31(2), 66-71. |
23 | 张金屯, 孟东平 (2004). 芦芽山华北落叶松林不同龄级立木的点格局分析. 生态学报 24, 35-40. |
24 | 张伟, 陈洪松, 王克林, 苏以荣, 张继光, 易爱军 (2006). 喀斯特峰丛洼地土壤养分空间分异特征及影响因子分析. 中国农业科学 39, 1828-1835. |
25 | Campo J, Maass JM, Jaramillo VJ, Yrízar AM (2000). Calcium, potassium, and magnesium cycling in a Mexican tropical dry forest ecosystem.Biogeochemistry 49, 21-36. |
26 | Cui WW, Liu JP (2010). Study on the differences of |
27 | village-level spatial variability of agricultural soil available K in the typical black soil regions of Northeast China. In: Li DL, Liu YD, Chen YY, eds. Computer and Computing Technologies in Agriculture IV. Berlin Heidelberg: Springer. pp. 674-681. |
28 | Fujiyoshi R, Satake Y, Sumiyoshi T (2009). Depth profiles of potassium and its isotope ratio (40K/K) in several forest soils.J Radioanal Nucl Chem 281, 553-561. |
29 | Halevy J (1977). Estimation of available potassium for cotton by soil analysis.Plant Soil 47, 363-373. |
30 | Herwitz SR (1986). Episodic stemflow inputs of magnesium and potassium to a tropical forest floor during heavy rainfall events.Oecologia (Berlin) 70, 423-425. |
31 | Osono T, Takeda H (2004). Potassium, calcium, and magnesium dynamics during litter decomposition in a cool temperate forest.J Forest Res 9, 23-31. |
32 | Pracilio G, Adams ML, Smettem KRJ, Harper RJ (2006). Determination of spatial distribution patterns of clay and plant available potassium contents in surface soils at the farm scale using high resolution gamma ray spectrometry.Plant Soil 282, 67-82. |
33 | Turner BL, Wright SJ (2014). The response of microbial biomass and hydrolytic enzymes to a decade of nitrogen, phosphorus, and potassium addition in a lowland tropical rain forest.Biogeochemistry 117, 115-130. |
/
〈 | 〉 |