Plant Microfluidic Chip, an Integrated High-throughput Platform for Real-time Analysis of Plant Growth and Development
Received date: 2014-09-29
Accepted date: 2015-01-27
Online published: 2015-10-09
Plant growth and development is a complex and dynamic process. Understanding the details of the process is a challenge for biological research. The microfluidic technique provides an effective way to achieve this goal. Research of microorganisms and animal cell lines has demonstrated that this technique has the advantages of real-time detection with high resolution and high-throughput processing. Recently, root microfluidic chip assay developed on the basis of microfluidic chip assay for plants showed potential: real-time concentrations of cellular Zn and Ca ions and glucose in Arabidopsis root were successfully and non-invasively measured. With more substrate-specific FRET sensors developed, root microfluidic chip could be used to detect concentrations of cellular phytohormones or other cytosolic metabolites and their variations. In addition, diverse microfluidic-based new chip assays provide ideal platforms for studying biological activities such as interactions between plants and pathogens, polarity growth of pollen tubes or cell division and differentiation. As a powerful tool to survey cellular activities induced by genetic factors or environmental stimuli, microfluidic chip assay could bring more breakthroughs and insights in plant research.
Key words: microfluidic chip; FRET sensor; real-time detection; high throughput
Minghong Wang, Lai Ma, Xiaojiang Zheng, Yibing Hu . Plant Microfluidic Chip, an Integrated High-throughput Platform for Real-time Analysis of Plant Growth and Development[J]. Chinese Bulletin of Botany, 2015 , 50(5) : 637 . DOI: 10.11983/CBB14177
1 | 曹继容, 钟广炎, 王其兵 (2014). 植物离子组学及其研究方法与应用进展. 植物学报 49, 504-513. |
2 | 董淼, 黄越, 陈文铎, 徐涛, 郎秋蕾 (2013). 降解组测序技术在植物miRNA研究中的应用. 植物学报 48, 344-353. |
3 | 黄儒, 苍晶, 于晶, 卢宝伟, 刘丽杰, 王健飞, 郭人铭, 徐琛 (2014). 冬小麦小RNA高通量测序及生物信息学分析. 植物学报 49, 8-18. |
4 | 王进军, 陈小川, 邢达 (2003). FRET技术及其在蛋白质-蛋白质分子相互作用研究中的应用. 生物化学与生物物理进展 30, 980-984. |
5 | 王盛, 陈典华, 蒋驰洲, 吴琼, 李煌, 华子春 (2012). 基于荧光蛋白的荧光共振能量转移探针的构建及应用. 中国细胞生物学学报 34, 1258-1267. |
6 | 玄元虎, 朱毅勇, 胡一兵 (2014). SWEET蛋白家族研究进展. 中国科学: 生命科学 44, 676-684. |
7 | Bermejo C, Ewald JC, Lanquar V, Jones AM, Frommer WB (2011a). In vivo biochemistry: quantifying ion and metabolite levels in individual cells or cultures of yeast.Biochem J 438, 1-10. |
8 | Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB (2010). Dynamic analysis of cytosolic glucose and ATP levels in yeast using optical sensors.Biochem J 432, 399-406. |
9 | Bermejo C, Haerizadeh F, Takanaga H, Chermak D, Frommer WB (2011b). Optical sensors for measuring dynamic changes of cytosolic metabolite levels in yeast. Nat Protoc 6, 1806-1817. |
10 | Campbell RE (2009). Fluorescent-protein-based biosensors: modulation of energy transfer as a design principle.Anal Chem 81, 5972-5979. |
11 | Chaudhuri B, Hörmann F, Frommer WB (2011). Dynamic imaging of glucose flux impedance using FRET sensors in wild-type Arabidopsis plants. J Exp Bot 62, 2411-2417. |
12 | Davidson MW, Campbell RE (2009). Engineered fluorescent proteins: innovations and applications.Nat Meth 6, 713-717. |
13 | Dean KM, Qin Y, Palmer AE (2012). Visualizing metal ions in cells: an overview of analytical techniques, approaches, and probes.Biochim Biophys Acta 1823, 1406-1415. |
14 | Denninger P, Bleckmann A, Lausser A, Vogler F, Ott T, Ehrhardt DW, Frommer WB, Sprunck S, Dresselhaus T, Grossmann G (2014). Male-female communication triggers calcium signatures during fertilization in Arabidopsis.Nat Commun 5, 4645. |
15 | Ehrhardt DW, Frommer WB (2012). New technologies for 21st century plant science.Plant Cell 24, 374-394. |
16 | Emmanouilidou E, Teschemacher AG, Pouli AE, Nicholls LI, Seward EP, Rutter GA (1999). Imaging Ca2+ concentration changes at the secretory vesicle surface with a recombinant targeted cameleon.Curr Biol 9, 915-918. |
17 | Evers TH (2007). FRET-based Sensor Proteins: A Molecular Picture. Eindhoven: Technische Universiteit Eindhoven. pp. 19. |
18 | Grossmann G, Guo WJ, Ehrhardt DW, Frommer WB, Sit RV, Quake SR, Meier M (2011). The RootChip: an integrated microfluidic chip for plant science. Plant Cell 23, 4234-4240. |
19 | Grossmann G, Meier M, Cartwright HN, Sosso D, Quake SR, Ehrhardt DW, Frommer WB (2012). Time-lapse fluorescence imaging of Arabidopsis root growth with rapid manipulation of the root environment using the RootChip. J Vis Exp 65, 4290. |
20 | Haydon MJ (2014). Getting a sense for zinc in plants.New Phytol 202, 10-12. |
21 | Horade M, Yanagisawa N, Mizuta Y, Higashiyama T, Arata H (2014). Growth assay of individual pollen tubes arrayed by microchannel device.Microelectron Eng 118, 25-28. |
22 | Hu CX, Kearn J, Urwin P, Lilley C, O'Connor V, Holden-Dye L, Morgan H (2014). StyletChip: a microfluidic device for recording host invasion behaviour and feeding of plant parasitic nematodes.Lab Chip 14, 2447-2455. |
23 | Jiang HW, Xu Z, Aluru MR, Dong L (2014). Plant chip for high-throughput phenotyping of Arabidopsis.Lab Chip 14, 1281-1293. |
24 | Jones AM, Danielson JA, Manojkumar SN, Lanquar V, Grossmann G, Frommer WB (2014). Abscisic acid dynamics in roots detected with genetically encoded FRET sensors.Elife 3, e01741. |
25 | Jones AM, Grossmann G, Danielson JÅH, Sosso D, Chen LQ, Ho CH, Frommer WB (2013). In vivo biochemistry: applications for small molecule biosensors in plant biology.Curr Opin Plant Biol 16, 389-395. |
26 | Kao JPY, Li G, Auston DA (2010). Chapter 5—practical aspects of measuring intracellular calcium signals with fluorescent indicators.Methods Cell Biol 99, 113-152. |
27 | Krebs M, Held K, Binder A, Hashimoto K, Den Herder G, Parniske M, Kudla J, Schumacher K (2012). FRET- based genetically encoded sensors allow high-resolution live cell imaging of Ca2+ dynamics.Plant J 69, 181-192. |
28 | Lanquar V, Grossmann G, Vinkenborg JL, Merkx M, Thomine S, Frommer WB (2014). Dynamic imaging of cytosolic zinc in Arabidopsis roots combining FRET sensors and RootChip technology.New Phytol 202, 198-208. |
29 | Looger LL, Lalonde S, Frommer WB (2005). Genetically encoded FRET sensors for visualizing metabolites with subcellular resolution in living cells.Plant Physiol 138, 555-557. |
30 | Mank M, Santos AF, Direnberger S, Mrsic-Flogel TD, Hofer SB, Stein V, Hendel T, Reiff DF, Levelt C, Borst A, Bonhoeffer T, Hübener M, Griesbeck O (2008). A genetically encoded calcium indicator for chronic in vivo two-photon imaging.Nat Methods 5, 805-811. |
31 | Meier M, Lucchetta EM, Ismagilov RF (2010). Chemical stimulation of the Arabidopsis thaliana root using multi-laminar flow on a microfluidic chip.Lab Chip 10, 2147-2153. |
32 | Mérola F, Fredj A, Betolngar DB, Ziegler C, Erard M, Pasquier H (2014). Newly engineered cyan fluorescent proteins with enhanced performances for live cell FRET imaging.Biotechnol J 9, 180-191. |
33 | Nezhad SA (2014). Microfluidic platforms for plant cells studies. Lab Chip 14, 3262-3274. |
34 | Nezhad SA, Naghavi M, Packirisamy M, Bhat R, Geitmann A (2013a). Quantification of cellular penetrative forces using lab-on-a-chip technology and finite element modeling.Proc Natl Acad Sci USA 110, 8093-8098. |
35 | Nezhad SA, Packirisamy M, Bhat R, Geitmann A (2013b). In vitro study of oscillatory growth dynamics of Camellia pollen tubes in microfluidic environment. IEEE Trans Biomed Eng 60, 3185-3193. |
36 | Okumoto S (2014). Quantitative imaging approaches for small-molecule measurements using FRET sensors in plants. In: Sriram G, ed. Plant Metabolism. New York: Humana Press. pp. 55-64. |
37 | Okumoto S, Jones A, Frommer WB (2012). Quantitative imaging with fluorescent biosensors. Annu Rev Plant Biol 63, 663-706. |
38 | Park JG, Palmer AE (2014). Quantitative measurement of Ca2+ and Zn2+ in mammalian cells using genetically encoded fluorescent biosensors. In: Zhang J, Ni Q, Newman RH, eds. Fluorescent Protein-Based Biosensors. New York: Humana Press. pp. 29-47. |
39 | Sozzani R, Busch W, Spalding EP, Benfey PN (2014). Advanced imaging techniques for the study of plant growth and development.Trends Plant Sci 19, 304-310. |
40 | Takanaga H, Chaudhuri B, Frommer WB (2008). GLUT1 and GLUT9 as major contributors to glucose influx in HepG2 cells identified by a high sensitivity intramolecular FRET glucose sensor.Biochim Biophys Acta 1778, 1091-1099. |
41 | Unger MA, Chou HP, Thorsen T, Scherer A, Quake SR (2000). Monolithic microfabricated valves and pumps by multilayer soft lithography.Science 288, 113-116. |
42 | Vinkenborg JL, Nicolson TJ, Bellomo EA, Koay MS, Rutter GA, Merkx M (2009). Genetically encoded FRET sensors to monitor intracellular Zn2+ homeostasis. Nat Meth 6, 737-740. |
43 | Whitesides GM (2006). The origins and the future of microfluidics.Nature 442, 368-373. |
44 | Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y (2011). A microsystem-based assay for studying pollen tube guidance in plant reproduction.J Micromech Microeng 21, 054018. |
/
〈 | 〉 |