Distribution Characteristics of Arsenic in Medicinal Plants Panax notoginseng′s Taproots Tissue and Subcellular Components

Expand
  • 1Agri-Food Quality Standard and Testing Technology Institute, Yunnan Academy of Agricultural Sciences, Kunming 650221, China
    2Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    3The Second Affiliated Hospital of Kunming Medical University, Kunming 650101, China

? These authors contributed equally to this paper

Received date: 2014-07-16

  Accepted date: 2014-12-23

  Online published: 2015-10-09

Abstract

We used synchrotron radiation X-ray fluorescence (SRXRF) and subcellular distribution research methods to study the characteristics of arsenic (As) in roots of Panax notoginseng and subcellular distribution. Arsenic distributed on the root epidermis of P. notoginseng and had a tendency to migrate to vascular bundle. Cytoplasmic supernatant represented the mainly concentration of subcellular components, and the cytoplasmic supernatant arsenic content of 20 mg·L-1 was 200 times of CK. We analyzed the quadratic regression equation of arsenic content in subcellular constituents of P. notoginseng taproots and As concentrations in nutrient solution and found a direct relationship between As content in the subcellular constituents and the environment. The proportion of each constituent was in the order of cytoplasmic supernatant > cell wall > cytoplasmic organelles. The cytoplasmic supernatant content of 20 mg·L-1 As was the highest, accounting for about 65.78%, and cytoplasmic organelles and the cell wall always maintained low levels of As.

Cite this article

Lu Chen, Yanhua Mi, Xiaoming Wan, Zhiwei Yuan, Benlin Yin, Lizhong He . Distribution Characteristics of Arsenic in Medicinal Plants Panax notoginseng′s Taproots Tissue and Subcellular Components[J]. Chinese Bulletin of Botany, 2015 , 50(5) : 591 -597 . DOI: 10.11983/CBB14131

References

1 陈璐, 米艳华, 林昕, 刘大会, 曾民, 陈晓艳 (2014). 土壤-三七系统重金属污染调查及相关分析. 中国中药杂志 39, 2608-2613.
2 陈同斌, 黄泽春, 黄宇营, 谢华, 廖晓勇 (2003). 砷超富集植物中元素的微区分布及其与砷富集的关系. 科学通报 48, 1163-1168.
3 陈同斌, 阎秀兰, 廖晓勇, 肖细元, 黄泽春, 谢华, 翟丽梅 (2005). 蜈蚣草中砷的亚细胞分布与区隔化作用. 科学通报 50, 2739-2744.
4 丁枫华, 刘术新, 罗丹, 王果, 张娟 (2010). 基于水培毒性测试的砷对19种常见蔬菜的毒性. 环境化学 29, 439-443.
5 冯光泉, 金航, 陈中坚, 段昌颜, 崔秀明, 孔令明 (2003). 不同营养元素对三七生长的影响研究. 现代中药研究与实践 17(增刊), 18-21.
6 冯光泉, 张文斌, 陈中坚, 王勇, 崔秀明 (2004). 三七及其栽培土壤中几种重金属元素含量的测定. 中草药 34, 1051-1054.
7 李卫东 (2004). 文山州三七GAP种植区环境质量状况调查. 云南环境科学 23, 168-170.
8 田生科 (2010). 超积累东南景天(Sedum alfredii Hance)对重金属(Zn/Cd/Pb)的解毒机制. 博士论文. 杭州: 浙江大学. pp. 44-56.
9 王朝梁, 陈中坚, 崔秀明, 孙玉琴 (2004). 文山三七的原产地域产品特征. 中国中药杂志 29, 511-514.
10 汪良驹, 刘友良 (1998). 植物细胞中的液泡及其生理功能. 植物生理学通讯 34, 394-400.
11 阎秀兰, 廖晓勇, 于冰冰, 张文斌 (2011). 药用植物三七对土壤中砷的累积特征及其健康风险. 环境科学 32, 880-885.
12 詹宝, 徐文忠, 麻密 (2006). 砷超富集植物蜈蚣草原生质体的分离及其抗砷性分析. 植物学通报 23, 363-367.
13 郑国锠 (2000). 细胞生物学(第2版). 北京: 高等教育出版社. pp. 127-127.
14 周卫, 汪洪, 林葆 (1999). 镉胁迫下钙对镉在玉米细胞中分布及对叶绿体结构与酶活性的影响. 植物营养与肥料学报 5, 335-340.
15 Ager FJ, Ynsa MD, Domı?nguez-Solı?s JR, Gotor C, Res- paldiza MA, Romero LC (2002). Cadmium localization and quantification in the plant Arabidopsis thaliana using Micro-PIXE.Nucl Instrum Methods Phys Res B 189, 494-498.
16 Bhatia NP, Orlic I, Siegele R, Ashwath N, Baker AJM, Walsh KB (2003). Elemental mapping using PIXE shows the main pathway of nickel movement is principally symplastic within the fruit of the hyperaccumulator Stackhousia tryonii.New Phytol 160, 479-488.
17 Bunzl K, Trautmannsheimer M, Schramel P, Reifenhäuser W (2001). Availability of arsenic, copper, lead, thallium, and zinc to various vegetables grown in slag- contaminated soils.J Environ Qual 30, 934-939.
18 Lin HR, Chen GG, Zhu SH, Chen YX, Chen DL, Xu W, Yu XH, Shi JY (2013). The interaction of CuS and Halothiobacillus HT1 biofilm in microscale using synchrotron radiation-based techniques.Int J Mol Sci 14, 11113-11124.
19 Liu XJ, Zhao QL, Sun GX, Williams P, Lu XJ, Cai JZ (2013). Arsenic speciation in Chinese herbal medicines and human health implication for inorganic arsenic.Environ Pollut 172, 149-154.
20 Pathore VS, Bajat YPS, Wittwer SH (1972). Subcellular localization of zinc and calcium in bean (Phaseolus vulgaris L.) tissues.Plant Physiol 49, 207-211.
21 Wang J, Song SJ, Shi L, Zhu Q, Ma CC, Tan XQ, Ding Y, Niu ZY (2013). Temporal expression of pelp1 during proliferation and osteogenic differentiation of rat bone marrow mesenchymal stem cells.PLoS One 8, e75477.
22 Wang LH, Duan GL, Williams PN, Zhu YG (2008). Influences of phosphorus starvation on OsACR2.1 expression and arsenic metabolism in rice seedlings.Plant Soil 313, 129-139.
23 Wang Y, Wang B, Zhu MT, Li M, Wang HJ, Wang M, Ouyang H, Chai ZF, Feng WY, Zhao YL (2011). Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure.Toxicol Lett 205, 26-37.
24 Weigel HJ, Jäger HJ (1980). Subcellular distribution and chemical form of cadmium in bean plants.Plant Physiol 46, 480-482.
25 Yan XL, Lin LY, Liao XY, Zhang WB (2012). Arsenic accumulation and resistance mechanism in Panax notoginseng, a traditional rare medicinal herb.Chemosphere 87, 31-36.
26 Zeng FR, Ali S, Qiu BY, Wu FB, Zhang GP (2010). Effects of chromium stress on the subcellular distribution and chemical form of Ca, Mg, Fe, and Zn in two rice genotypes.J Plant Nutr Soil Sci 173, 135-148.
27 Zheng MZ, Cai C, Hu Y, Sun GX, Williams PN, Cui HJ, Li G, Zhao FJ, Zhu YG (2011). Spatial distribution of arsenic and temporal variation of its concentration in rice.New Phytol 189, 200-209.
28 ———————————————
Outlines

/