[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
EXPERIMENTAL COMMUNICATIONS

Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network

Expand
  • 1Key Laboratory of Aromatic Plant Resources Exploitation and Utilization in Sichuan Higher Education, College of Life Sciences and Food Engineering, Yibin University, Yibin 644000, China
    2Beijing Key Laboratory of Plant Gene Resource and Low-carbon Environmental Biotechnology, Capital Normal University, Beijing 100048, China
    3Key Laboratory of Urban Agriculture (North) Ministry of Agriculture, Beijing University of Agriculture, Beijing 102206, China
? These authors contributed equally to this paper

Received date: 2014-10-27

  Accepted date: 2015-02-02

  Online published: 2015-04-10

Abstract

Cadmium is a non-essential heavy metal for plant growth. Cadmium stress causes cell metabolism disturbance or death in plant. Here, we performed transcriptome analysis of Physcomitrella patens during cadmium stress by RNA-Seq. We revealed a new transcriptional network of cadmium stress in plants. The functions of genes that were upregulated or downregulated under cadmium stress included microtubule-based movement, microtubule-based processing, cytoskeleton organization, DNA replication, DNA metabolic process, telomere maintenance and organization, sexual reproduction, urea metabolic process, and nitrogen cycle metabolic process. These proteins may play roles in P. patens under cadmium stress. Our study provides new information for the further research of the molecular mechanisms of plant adaptation to cadmium stress.

Cite this article

Zili Wu, Mengyao Yu, Lu Chen, Jing Wei, Xiaoqin Wang, Yong Hu, Yan Yan, Ping Wan . Transcriptome Analysis of Physcomitrella patens Response to Cadmium Stress by Bayesian Network[J]. Chinese Bulletin of Botany, 2015 , 50(2) : 171 -179 . DOI: 10.3724/SP.J.1259.2015.00171

[an error occurred while processing this directive]

References

1 Cabot C, Gallego B, Martos S, Barceló J, Poschenrieder C (2013). Signal cross talk in Arabidopsis exposed to cadmium, silicon, and Botrytis cinerea.Planta 237, 337-349.
2 Chen YH, Yang XY, He K, Liu MH, Li JG, Gao ZF, Lin ZQ, Zhang YF, Wang XX, Qiu XM, Shen YP, Zhang L, Deng XH, Luo JC, Deng XW, Chen ZL, Gu HY, Qu LJ (2006). The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family.Plant Mol Biol 60, 107-124.
3 Chmielowska-Bak J, Deckert J (2012). A common res- ponse to common danger? Comparison of animal and plant signaling pathways involved in cadmium sensing.J Cell Commun Signal 6, 191-204.
4 Chmielowska-Bak J, Deckert J (2013). Nitric oxide med- iates Cd-dependent induction of signaling-associated genes.Plant Signal Behav 8, e26664.
5 Chmielowska-Bak J, Gzyl J, Rucińska-Sobkowiak R, Arasimowicz-Jelonek M, Deckert J (2014). The new insights into cadmium sensing.Front Plant Sci 5, 245.
6 Corradi MG, Gorbi G, Ricci A, Torelli A, Bassi M (1995). Chromium-induced sexual reproduction gives rise to a Cr-tolerant progeny in Scenedesmus acutus.Ecotoxicol Environ Saf 32, 12-18.
7 DalCorso G, Farinati S, Furini A (2010). Regulatory networks of cadmium stress in plants.Plant Signal Behav 5, 663-667.
8 Dovgalyuk A, Kalynyak T, Blume YB (2003). Heavy metals have a different action from aluminium in disrupting microtubules in Allium cepa meristematic cells.Cell Biol Int 27, 193-195.
9 Ercal N, Gurer-Orhan H, Aykin-Burns N (2001). Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage.Curr Top Med Chem 1, 529-539.
10 Farinati S, DalCorso G, Varotto S, Furini A (2010). The Brassica juncea BjCdR15, an ortholog of Arabidopsis TGA3, is a regulator of cadmium uptake, transport and accumulation in shoots and confers cadmium tolerance in transgenic plants.New Phytol 185, 964-978.
11 Fojtová M, Fulnečková J, Fajkus J, Kovařík A (2002). Recovery of tobacco cells from cadmium stress is accompanied by DNA repair and increased telomerase activity.J Exp Bot 53, 2151-2158.
12 Hart JJ, Welch RM, Norvell WA, Sullivan LA, Kochian LV (1998). Characterization of cadmium binding, uptake, and translocation in intact seedlings of bread and durum wheat cultivars.Plant Physiol 116, 1413-1420.
13 Hartwig A, Schwerdtle T (2002). Interactions by carcinogenic metal compounds with DNA repair processes: toxicological implications.Toxicol Lett 127, 47-54.
14 Hepler PK, Hush JM (1996). Behavior of microtubules in living plant cells.Plant Physiol 112, 455-461.
15 Herbette S, Taconnat L, Hugouvieux V, Piette L, Magniette MLM, Cuine S, Auroy P, Richaud P, Forestier C, Bourguignon J, Renou JP, Vavasseur A, Leonhardt N (2006). Genome-wide transcriptome profiling of the early cadmium response of Arabidopsis roots and shoots. Biochimie 88, 1751-1765.
16 Hsu YT, Kao CH (2003). Role of abscisic acid in cadmium tolerance of rice (Oryza sativa L.) seedlings.Plant Cell Environ 26, 867-874.
17 Huang JJ, Okuka M, Lu WS, Tsibris JCM, McLean MP, Keefe DL, Liu L (2013). Telomere shortening and DNA damage of embryonic stem cells induced by cigarette smoke.Reprod Toxicol 35, 89-95.
18 Liu DH, Xue P, Meng QM, Zou J, Gu JG, Jiang WS (2009). Pb/Cu effects on the organization of microtubule cyto- skeleton in interphase and mitotic cells of Allium sativum L.Plant Cell Rep 28, 695-702.
19 Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS, Kim HS, Kim SH, Park HC, Yun DJ, Chung WS (2010). Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species.Phytochemistry 71, 614-618.
20 Ma WW, Xu WZ, Xu H, Chen YS, He ZY, Ma M (2010). Nitric oxide modulates cadmium influx during cadmium- induced programmed cell death in tobacco BY-2 cells.Planta 232, 325-335.
21 Nzengue Y, Steiman R, Garrel C, Lefèbvre E, Guiraud P (2008). Oxidative stress and DNA damage induced by cadmium in the human keratinocyte HaCaT cell line: role of glutathione in the resistance to cadmium.Toxicology 243, 193-206.
22 Oono Y, Yazawa T, Kawahara Y, Kanamori H, Kobayashi F, Sasaki H, Mori S, Wu J, Handa H, Itoh T, Matsumoto T (2014). Genome-wide transcriptome analysis reveals that cadmium stress signaling controls the expression of genes in drought stress signal pathways in rice. PLoS One 9, e96946.
23 Přibyl P, Cepák V, Zachleder V (2008). Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: II. The effect of aluminium, nickel and copper.Toxicol In Vitro 22, 1160-1168.
24 Qi XT, Zhang YX, Chai TY (2007). Characterization of a novel plant promoter specifically induced by heavy metal and identification of the promoter regions conferring he- avy metal responsiveness.Plant Physiol 143, 50-59.
25 Rai V, Vajpayee P, Singh SN, Mehrotra S (2004). Effect of chromium accumulation on photosynthetic pigments, oxidative stress defense system, nitrate reduction, proline level and eugenol content of Ocimum tenuiflorum L.Plant Sci 167, 1159-1169.
26 Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H, Nishiyama T, Perroud PF, Lindquist EA, Kamisugi Y, Tanahashi T, Sakakibara K, Fujita T, Oishi K, Shin IT, Kuroki Y, Toyoda A, Suzuki Y, Hashimoto S, Yamaguchi K, Sugano S, Kohara Y, Fujiyama A, Anterola A, Aoki S, Ashton N, Barbazuk WB, Barker E, Bennetzen JL, Blankenship R, Cho SH, Dutcher SK, Estelle M, Fawcett JA, Gundlach H, Hanada K, Heyl A, Hicks KA, Hughes J, Lohr M, Mayer K, Melkozernov A, Murata T, Nelson DR, Pils B, Prigge M, Reiss B, Renner T, Rombauts S, Rushton PJ, Sanderfoot A, Schween G, Shiu SH, Stueber K, Theodoulou FL, Tu H, Van de Peer Y, Verrier PJ, Waters E, Wood A, Yang L, Cove D, Cuming AC, Hasebe M, Lucas S, Mishler BD, Reski R, Grigoriev IV, Quatrano RS, Boore JL (2008). The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants.Science 319, 64-69.
27 Roth U, von Roepenack-Lahaye E, Clemens S (2006). Proteome changes in Arabidopsis thaliana roots upon exposure to Cd2+.J Exp Bot 57, 4003-4013.
28 Rother M, Krauss GJ, Grass G, Wesenberg D (2006). Sulphate assimilation under Cd2+ stress in Physcomitrella patens—combined transcript, enzyme and metabolite profiling. Plant Cell Environ 29, 1801-1811.
29 Singh I, Shah K (2014). Evidences for structural basis of altered ascorbate peroxidase activity in cadmium- stressed rice plants exposed to jasmonate.Biometals 27, 247-263.
30 van de Mortel JE, Schat H, Moerland PD, Ver Loren van Themaat E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MG (2008). Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens.Plant Cell Environ 31, 301-324.
31 Wang YC, Gao CQ, Liang YN, Wang C, Yang CP, Liu GF (2010). A novel bZIP gene from Tamarix hispida mediates physiological responses to salt stress in tobacco plants.J Plant Physiol 167, 222-230.
32 Weber M, Trampczynska A, Clemens S (2006). Compara- tive transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd2+-hypertolerant facultative metallophyte Arabidopsis halleri.Plant Cell Environ 29, 950-963.
33 Xiong J, Fu G, Tao L, Zhu C (2010). Roles of nitric oxide in alleviating heavy metal toxicity in plants.Arch Biochem Biophys 497, 13-20.
34 Xiong J, Lu H, Lu KX, Duan YX, An LY, Zhu C (2009). Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings.Planta 230, 599-610.
35 Ye Y, Li Z, Xing D (2013). Nitric oxide promotes MPK6-mediated caspase-3-like activation in cadmium- induced Arabidopsis thaliana programmed cell death.Plant Cell Environ 36, 1-15.
36 Yourtchi MS, Bayat H (2013). Effect of cadmium toxicity on growth, cadmium accumulation and macronutrient content of durum wheat (Dena CV.).Int J Agri Crop Sci 6, 1099-1103.
Outlines

/

[an error occurred while processing this directive]