[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]

Research Advance of K+ Channel AKT1 in Plants

Expand
  • School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China

# Co-first authors

Received date: 2016-02-01

  Accepted date: 2016-04-26

  Online published: 2017-04-05

Abstract

Potassium (K) is an essential macronutrient for plant growth and development. K+ uptake was mainly mediated by K+ channels and transporters in root cells. Arabidopsis K+ transporter 1 (AKT1) is one of the important members of the Shaker type K+ channel families and plays crucial roles in root K+ uptake and transmembrane transport of plants. Here, we summarize the latest research advances for the K+ channel AKT1, mainly its molecular structure, tissue-specific expression, regulation mechanisms, and biological function. We propose research hotspots and directions for research into the AKT1 channel.

Cite this article

Guoqiang Wu, Qingzhao Shui, Ruijun Feng . Research Advance of K+ Channel AKT1 in Plants[J]. Chinese Bulletin of Botany, 2017 , 52(2) : 225 -234 . DOI: 10.11983/CBB16023

[an error occurred while processing this directive]

References

[1] 山仑 (2011). 科学应对农业干旱. 干旱地区农业研究 29, 1-5.
[2] 王毅, 武维华 (2009). 植物钾营养高效分子遗传机制. 植物学报 44, 27-36.
[3] Ache P, Becker D, Deeken R, Dreyer I, Weber H, Fromm J, Hedrich R (2001). VFK1, aVicia faba K+ channel involved in phloem unloading. Plant J 27, 571-580.
[4] Ahmad I, Mian A, Maathuis FJM (2016). Overexpression of the rice AKT1 potassium channel affects potassium nutrition and rice drought tolerance. J Exp Bot 67, 2689-2698.
[5] Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2011). Root K+ acquisition in plants: theArabidopsis tha- liana model. Plant Cell Physiol 52, 1603-1612.
[6] Amtmann A, Sanders D (1999). Mechanisms of Na+ uptake by plant cells.Adv Bot Res 29, 75-112.
[7] Ardie SW, Liu S, Takano T (2010). Expression of the AKT1-type K+ channel gene fromPuccinellia tenuiflora, PutAKT1, enhances salt tolerance in Arabidopsis. Plant Cell Rep 29, 865-874.
[8] Benito B, Haro R, Amtmann A, Cuin TA, Dreyer I (2014). The twins K+ and Na+ in plants.J Plant Physiol 171, 723-731.
[9] Boscari A, Clement M, Volkov V, Golldack D, Hybiak J, Miller AJ, Amtmann A, Fricke W (2009). Potassium channels in barley: cloning, functional characterization and expression analyses in relation to leaf growth and development.Plant Cell Environ 32, 1761-1777.
[10] Buschmann PH, Vaidyanathan R, Gassmann W, Schr- oeder JI (2000). Enhancement of Na+ uptake currents, time dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells.Plant Physiol 122, 1387-1397.
[11] Chaves MM, Oliveira MM (2004). Mechanisms underlying plant resilience to water deficits: prospects for water-sav- ing agriculture.J Exp Bot 55, 2365-2384.
[12] Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim BG, Lee SC, Kudla J, Luan S (2007). Two calcineurin B-like sensors, interacting with protein kinase CIPK23, regulate root transpiration and potassium uptake in Ara- bidopsis.Plant J 52, 223-239.
[13] Chérel I, Lefoulon C, Boeglin M, Sentenac H (2014). Molecular mechanisms involved in plant adaptation to low K+ availability.J Exp Bot 65, 833-848.
[14] Cuéllar T, Azeem F, Andrianteranagna M, Pascaud F, Verdeil JL, Sentenac H, Zimmermann S, Gaillard I (2013). Potassium transport in developing fleshy fruits: the grapevine inward K+ channel VvK1.2 is activated by CIPK-CBL complexes and induced in ripening berry flesh cells.Plant J 73, 1006-1018.
[15] Cuéllar T, Pascaud F, Verdeil JL, Torregrosa L, Adam- Blondon AF, Thibaud JB, Sentenac H, Gaillard I (2010). A grapevine Shaker inward K+ channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under dr- ought stress conditions. Plant J 61, 58-69.
[16] Demidchik V (2014). Mechanisms and physiological roles of K+ efflux from root cells.J Plant Physiol 171, 696-707.
[17] Demidchik V, Maathuis FJM (2007). Physiological roles of nonselective cation channels in plants: from salt stress to signaling and development.New Phytol 175, 387-404.
[18] Dietrich P, Anschütz U, Kugler A, Becker D (2010). Physiology and biophysics of plant ligand gated ion chan- nels.Plant Biol 12, 80-93.
[19] Dreyer I, Blatt MR (2009). What makes a gate? The ins and outs of Kv-like K+ channels in plants.Trends Plant Sci 14, 383-390.
[20] Dreyer I, Uozumi N (2011). Potassium channels in plant cells. FEBS J 278, 4293-4303.
[21] Duan RH, Ma Q, Zhang JL, Hu J, Bao AK, Wei L, Wang Q, Luan S, Wang SM (2015). The inward-rectifying K+ channel SsAKT1 is a candidate involved in K+ uptake in the halophyteSuaeda salsa under saline condition. Plant Soil 395, 173-187.
[22] Duby G, Hosy E, Fizames C, Alcon C, Costa A, Sentenac H, Thibaud JB (2008). AtKC1, a conditionally targeted Shaker-type subunit, regulates the activity of plant K+ ch- annels.Plant J 53, 115-123.
[23] Formentin E, Varotto S, Costa A, Downey P, Bregante M, Naso A, Picco C, Gambale F, Schiavo FL (2004). DKT1, a novel K+ channel from carrot, forms functional heteromeric channels with KDC1.FEBS Lett 573, 61-67.
[24] Fuchs I, Stolzle S, Ivashikina N, Hedrich R (2005). Rice K+ uptake channel OsAKT1 is sensitive to salt stress.Planta 221, 212-221.
[25] Gambale F, Uozumi N (2006). Properties of Shaker-type potassium channels in higher plants.J Membrane Biol 210, 1-19.
[26] Geiger D, Becker D, Vosloh D, Gambale F, Palme K, Rehers M, Anschuetz U, Dreyer I, Kudla J, Hedrich R (2009). Heteromeric AtKC1-AKT1 channels in Arabidopsis roots facilitate growth under K+-limiting conditions.J Biol Chem 284, 21288-21295.
[27] Gierth M, Mäser P (2007). Potassium transporters in plants-involvement in K+ acquisition, redistribution and homeostasis.FEBS Lett 581, 2348-2356.
[28] Golldack D, Quigley F, Michalowski CB, Kamasani UR, Bohnert HJ (2003). Salinity stress-tolerant and -sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Mol Biol 51, 71-81.
[29] Grefen C, Blatt MR (2012). Do calcineurin B-like proteins interact independently of the serine threonine kinase CIPK23 with the K+ channel AKT1?Plant Physiol 159, 915-919.
[30] Han M, Wu W, Wu WH, Wang Y (2016). Potassium transporter KUP7 is involved in K+ acquisition and translocation in Arabidopsis root under K+-limited conditions.Mol Plant 9, 437-446.
[31] Hartje S, Zimmermann S, Klonus D, Mueller-Roeber B (2000). Functional characterization of LKT1, a K+ uptake channel from tomato root hairs, and comparison with the closely related potato inwardly rectifying K+ channel SKT1 after expression inXenopus oocytes. Planta 210, 723-731.
[32] Hedrich P (2012). Ion channels in plants.Physiol Rev 92, 1777-1811.
[33] Hirsch RE, Lewis BD, Spalding EP, Sussman MR (1998). A role for the AKT1 potassium channel in plant nutrition.Science 280, 918-921.
[34] Honsbein A, Sokolovski S, Grefen C, Campanoni P, Pratelli R, Paneque M, Chen Z, Johansson I, Blatt MR (2009). A tripartite SNARE-K+ channel complex mediates in channel-dependent K+ nutrition in Arabidopsis.Plant Cell 21, 2859-2877.
[35] Horie T, Hauser F, Schroeder JI (2009). HKT transporter- mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants.Trends Plant Sci 14, 660-668.
[36] Jeanguenin L, Alcon C, Duby G, Boeglin M, Chérel I, Gaillard I, Zimmermann S, Sentenac H, Véry AA (2011). AtKC1 is a general modulator of Arabidopsis inward Shaker channel activity.Plant J 67, 570-582.
[37] Kronzucker HJ, Britto DT (2011). Sodium transport in plants: a critical review.New Phytol 189, 54-81.
[38] Lagarde D, Basset M, Lepetit M, Conejero G, Gaymard F, Astruc S, Grignon C (1996). Tissue-specific expression of ArabidopsisAKT1 gene is consistent with a role in K+ nutrition. Plant J 9, 195-203.
[39] Lan WZ, Lee SC, Che YF, Jiang YQ, Luan S (2011). Mechanistic analysis of AKT1 regulation by the CBL- CIPK-PP2CA interactions.Mol Plant 4, 527-536.
[40] Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, Pandey GK, Lu G, Buchanan BB, Luan S (2007). A protein phosphorylation/dephosphorylation network regulates a plant potassium channel.Proc Natl Acad Sci USA 104, 15959-15964.
[41] Li J, Long Y, Qi GN, Xu ZJ, Wu WH, Wang Y (2014). The Os-AKT1 channel is critical for K+ uptake in rice roots and is modulated by the rice CBL1-CIPK23 complex.Plant Cell 26, 3387-3402.
[42] Li L, Kim BG, Cheong YH, Pandey GK, Luan S (2006). A Ca2+ signaling pathway regulates a K+ channel for low-K response in Arabidopsis.Proc Natl Acad Sci USA 103, 12625-12630.
[43] Li R, Zhang J, Wei J, Wang H, Wang Y, Ma R (2009). Functions and mechanisms of the CBL-CIPK signaling system in plant response to abiotic stress.Proc Natl Acad Sci USA 19, 667-676.
[44] Maathuis FJM (2009). Physiological functions of mineral macronutrients.Curr Opin Plant Biol 12, 250-258.
[45] Maathuis FJM, Filatov V, Herzyk P, Krijger GC, Axelsen KB, Chen SX (2003). Transcriptome analysis of root trans- porters reveals participation of multiple gene families in the response to cation stress.Plant J 35, 675-692.
[46] Maathuis FJM, Ichida AM, Sanders D, Schroeder JI (1997). Roles of higher plant K+ channels.Plant Physiol 114, 1141-1149.
[47] Maathuis FJM, Sanders D (1993). Energization of potassium uptake in Arabidopsis thaliana. Planta 191, 302-307.
[48] Mahouachi J, Socorro AR, Talon M (2006). Responses of papaya seedlings (Carica papaya L.) to water stress and re-hydration: growth, photosynthesis and mineral nutrient imbalance. Plant Soil 281, 137-146.
[49] Martinez-Cordero MA, Martinez V, Rubio F (2005). High- affinity K+ uptake in pepper plants.J Exp Bot 56, 1553-1562.
[50] Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2014a). K+ uptake in plant roots. The systems involved, their regulation and parallels in other organisms.J Plant Physiol 171, 688-695.
[51] Nieves-Cordones M, Caballero F, Martínez V, Rubio F (2012). Disruption of theArabidopsis thaliana inward- rectifier K+ channel AKT1 improves plant responses to water stress. Plant Cell Physiol 53, 423-432.
[52] Nieves-Cordones M, Chavanieu A, Jeanguenin L, Alcon C, Szponarski W, Estaran S, Cherel I, Zimmermann S, Sentenac H, Gaillard I (2014b). Distinct amino acids in the C-linker domain of the Arabidopsis K+ channel KAT2 determine its subcellular localization and activity at the plasma membrane. Plant Physiol 164, 1415-1429.
[53] Nieves-Cordones M, Gaillard I (2014). Involvement of the S4-S5 linker and the C-linker domain regions to voltage-gating in plant Shaker channels: comparison with animal HCN and Kv channels.Plant Signal Behav 9, 10.
[54] Philippar K, Fuchs I, Luthen H, Hoth S, Bauer CS, Haga K, Thiel G, Ljung K, Sandberg G, Bottger M, Becker D, Hedrlch R (1999). Auxin-induced K+ channel expression represents an essential step in coleoptile growth and gravitropism.Proc Natl Acad Sci USA 96, 12186-12191.
[55] Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H (2003). Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant.Plant Mol Biol 51, 773-787.
[56] Pyo YJ, Gierth M, Schroeder JI, Cho MH (2010). High- affinity K+ transport in Arabidopsis: AtHAK5 and AKT1 are vital for seedling establishment and post germination growth under low-potassium conditions.Plant Physiol 153, 863-875.
[57] Ragel P, Ródenas R, García-Martín E, Andrés Z, Villalta I, Nieves-Cordones M, Rivero RM, Martínez V, Pardo JM, Quintero FJ, Rubio F (2015). The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots.Plant Physiol 169, 2863-2873.
[58] Reintanz B, Szyroki A, Ivashikina N, Ache P, Godde M, Becker D, Palme K, Hedrich R (2002). AtKC1, a silent Arabidopsis potassium channel α-subunit modulates root hair K+ influx.Proc Natl Acad Sci USA 99, 4079-4084.
[59] Ren XL, Qi GN, Feng HQ, Zhao S, Zhao SS, Wang Y, Wu WH (2013). Calcineurin B-like protein CBL10 directly interacts with AKT1 and modulates K+ homeostasis in Ara- bidopsis. Plant J 74, 258-266.
[60] Riedelsberger J, Sharma T, Gonzalez W, Gajdanowicz P, Morales-Navarro SE, Garcia-Mata C, Mueller-Roeber B, Gonzalez-Nilo FD, Blatt MR, Dreyer I (2010). Distri- buted structures underlie gating differences between the kin channel KAT1 and the K out channel SKOR.Mol Plant 3, 236-245.
[61] Sano T, Becker D, Ivashikina N, Wegner LH, Zimmer- mann U, Roelfsema MRG, Nagata T, Hedrich R (2007). Plant cells must pass a K+ threshold to re-enter the cell cycle.Plant J 50, 401-413.
[62] Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992). Cloning and expression in yeast of a plant potassium ion transport system. Science 256, 663-665.
[63] Shabala S (2003). Regulation of potassium transport in leaves: from molecular to tissue level.Ann Bot 92, 627-634.
[64] Shabala S, Cuin TA, Pottosin I (2010). Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels. FEBS Lett 15, 1993-1999.
[65] Shin R, Schachtman DP (2004). Hydrogen peroxide mediates plant root cell response to nutrient deprivation.Proc Natl Acad Sci USA 101, 8827-8832.
[66] Spalding EP, Hirsch RE, Lewis DR, Qi Z, Sussman MR, Lewis BD (1999). Potassium uptake supporting plant growth in the absence of AKT1 channel activity: inhibition by ammonium and stimulation by sodium. J Gen Physiol 113, 909-918.
[67] Su H, Golldack D, Katsuhara M, Zhao C, Bohnert HJ (2001). Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol 125, 604-614.
[68] Wang P, Guo Q, Wang Q, Zhou XR, Wang SM (2015). PtAKT1 maintains selective absorption capacity for K+ over Na+ in halophyte Puccinellia tenuiflora under salt stress. Acta Physiol Plant 37, 100.
[69] Wang SM, Wan CG, Wang YR, Chen H, Zhou ZY, Fu H, Sosebeeb RE (2004). The characteristics of Na+, K+ and free proline distribution in several drought-resistant plants of the Alxa Desert, China.J Arid Environ 56, 525-539.
[70] Wang XP, Chen LM, Liu WX, Shen LK, Wang FL, Zhou Y, Zhang D, Wu WH, Wang Y (2016). AtKC1 and CIPK23 synergistically modulate AKT1-mediated low potassium stress responses in Arabidopsis.Plant Physiol 170, 2264-2277.
[71] Wang Y, He L, Li HD, Xu J, Wu WH (2010). Potassium channel alpha-subunit AtKC1 negatively regulates AKT1- mediated K+ uptake in Arabidopsis roots under low-K+ stress.Cell Res 20, 826-837.
[72] Wang Y, Wu WH (2013). Potassium transport and signaling in higher plants.Annu Rev Plant Biol 64, 451-476.
[73] Ward JM, Mäser P, Schroeder JI (2009). Plant ion channels: gene families, physiology, and functional genomics analyses.Annu Rev Physiol 71, 59-82.
[74] Wu GQ, Feng RJ, Liang N, Yuan HJ, Sun WB (2015a). Sodium chloride stimulates growth and alleviates sorbitol- induced osmotic stress in sugar beet seedlings.Plant Growth Regul 75, 307-316.
[75] Wu GQ, Shui QZ, Wang CM, Zhang JL, Yuan HJ, Li SJ, Liu ZJ (2015b). Characteristics of Na+ uptake in sugar beet (Beta vulgaris L.) seedlings under mild salt conditions. Acta Physiol Plant 37, 70.
[76] Xia JH, Kong DD, Xue SW, Tian W, Li N, Bao F, Du J, Wang Y, Pan XJ, He YK (2014). Nitric oxide negatively regulates AKT1-mediated potassium uptake through mo- dulating vitamin B6 homeostasis in Arabidopsis.Proc Natl Acad Sci USA 111, 16196-16201.
[77] Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006). A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis.Cell 125, 1347-1360.
[78] Xu J, Tian XL, Eneji AE, Li ZH (2014). Functional characterization of GhAKT1, a novel Shaker-like K+ channel gene involved in K+ uptake from cotton(Gossypium hirsutum). Gene 545, 61-71.
[79] Zhang JL, Flowers TJ, Wang SM (2010). Mechanism of sodium uptake by roots of higher plants.Plant Soil 326, 45-60.
[80] Zimmermann S, Talke I, Ehrhardt T, Nast G, Müllerröber B (1998). Characterization of SKT1, an inwardly rectifying potassium channel from potato, by heterologous expression in insect cells.Plant Physiol 116, 879-890.
Outlines

/

[an error occurred while processing this directive]