EXPERIMENTAL COMMUNICATIONS

Polychlorinated Biphenyls Promotes Differentiation on Adventitious Roots of Populous tomentosa

Expand
  • 1Agricultural University of Hebei, Baoding 071000, China
    2Key Laboratory of Tree Species Germplasm Resource and Forest Protection of Hebei Province, Baoding 071000, China

Received date: 2017-10-27

  Online published: 2018-03-10

Abstract

Polychlorinated biphenyls (PCBs) pose serious harm to humans and the environment. PCBs have a hormesis effect, but the inner mechanism still remains unknown. In this paper, we used Populous tomentosa seedlings to investigate the effect of treatment with a PCB compound, Aroclor1254 (3 mg·L-1), on the differentiation of adventitious roots, phytohormone content and the expression of P009g125900, P006g142600, and P002g222700 genes related to auxin expression as well as P005g2489 and P005g2376 genes related to cytokinin expression. Aroclor1254 could promote the differentiation of adventitious roots, shorten the initial root formation time of adventitious roots, and enhance the adventitious root number. During adventitious root differentiation, Aroclor1254 treatment alone had a similar effect as IBA alone on IAA/(ZR+dhZR) content and the gene expression of P006g142600, P002g222700, P009g125900, P005g2489, and P005g2376. To further verify the auxin effect of Aroclor1254, we used Zea mays and transgenic Arabidopsis thaliana modified with a DR5::GUS auxin reporter gene to investigate the growth of coleoptiles or the response pattern of DR5::GUS to Aroclor1254 exposure. Aroclor1254 at a suitable concentration range could induce DR5::GUS gene expression but had no effect on the growth of coleoptiles. Thus, Aroclor1254 has a biological effect of auxin and can positively affect the differentiation of adventitious roots of P. tomentosa seedlings; a phenomenon called hormesis, but is not a plant growth regulator.

Cite this article

Liu Ming, Liu Xia, Sun Ran, Li Yuling, Du Kejiu . Polychlorinated Biphenyls Promotes Differentiation on Adventitious Roots of Populous tomentosa[J]. Chinese Bulletin of Botany, 2018 , 53(6) : 764 -772 . DOI: 10.11983/CBB17198

References

[1] 蔡卓平 (2009). 有机磷农药对海洋微藻的毒物兴奋效应及其机理研究. 博士论文. 广州: 暨南大学. pp. 59-98.
[2] 丁娜 (2012). 多氯联苯在毫米级根际微域中的消减行为及生物响应机制研究. 博士论文. 杭州: 浙江大学. pp. 64-85.
[3] 何佳 (2007). 多氯联苯(PCBs)对模式植物拟南芥的毒效应机制研究. 硕士论文. 杭州: 浙江大学. pp. 14-19.
[4] 李雪梅, 刘熔山 (1994). 小麦幼穗胚性愈伤组织诱导及分化过程中内源激素的作用. 植物生理学报 30, 255-260.
[5] 李叶, 张爽, 李玉灵, 杜克久 (2016). 多氯联苯暴露对绦柳初生根及显微结构的影响. 北方园艺 (24), 55-60.
[6] 梁继仁 (2012). SD大鼠新生期联合暴露苯并芘和3, 3', 4, 4', 5, 5'-六氯联苯对睾丸抗氧化酶和精子形成的影响. 硕士论文. 上海: 复旦大学. pp. 7-44.
[7] 刘亚云, 孙红斌, 陈桂珠 (2007a). 多氯联苯对桐花树幼苗生长及膜保护酶系统的影响. 应用生态学报 18, 123-128.
[8] 刘亚云, 孙红斌, 陈桂珠, 赵波, 李伟煜 (2007b). 秋茄(Kan- delia candel)幼苗对多氯联苯污染的生理生态响应. 生态学报 27, 746-754.
[9] 史树德, 孙亚卿, 魏磊 (2011). 植物生理学实验指导. 北京: 中国林业出版社. pp. 102-107.
[10] 孙然, 池翠兰, 李燕玲, 杜克久 (2015). 苯并[a]芘暴露对绦柳生长发育的影响. 河北林果研究 30, 126-128.
[11] 王传飞, 龚平, 王小萍, 姚檀栋 (2016). 西藏农田土和农作物中多氯联苯的分布、环境行为和健康风险评估. 生态毒理学报 11, 339-346.
[12] 王亚红, 赵燕, 彭彦, 刘晓柱, 张学文 (2012). 5′UTR序列对DR5::GUS基因瞬时表达的影响. 湖南农业大学学报(自然科学版) 38, 146-149.
[13] 王忠 (2009). 植物生理学(第2版). 北京: 中国农业出版社. pp. 315-329.
[14] 王子岚 (2016). 多氯联苯的类植物生长素生物学效应研究. 硕士论文. 保定: 河北农业大学. pp. 36.
[15] 曾凡锁, 钱晶晶, 康君, 王红艳, 王亦洲, 詹亚光 (2009). 转基因白桦中GUS基因表达的定量分析. 植物学报 44, 484-490.
[16] 张晓丹, 才满, 张爽, 杜克久 (2017). 4-BDE胁迫对毛白杨组培苗不定根发生的影响. 环境化学 36, 514-520.
[17] 周佳佳 (2013). 多氯联苯与邻苯二甲酸酯污染对油菜生长的影响及累积效应研究. 硕士论文. 泰安: 山东农业大学. pp. 15-25.
[18] 周琼芝 (2016). 低浓度QACs对小球藻生长及氮磷去除的毒物兴奋效应. 硕士论文. 湘潭: 湘潭大学. pp. 30-45.
[19] 朱鸿雁 (2012). 新生SD大鼠联合暴露苯并芘和多氯联苯对血清睾酮水平的影响及表观遗传机制对睾酮合成酶的调控作用. 硕士论文. 上海: 复旦大学. pp. 10-17.
[20] AKen BV, Correa PA, Schnoor JL (2010). Phytoremediation of polychlorinated biphenyls: new trends and promises.Environ Sci Technol 44, 2767-2776.
[21] Borja J, Taleon DM, Auresenia J, Gallardo S (2005). Polychlorinated biphenyls and their biodegradation.Process Biochem 40, 1999-2013.
[22] Christian M, Hannah WB, Lüthen H, Jones AM (2008). Identification of auxins by a chemical genomics approach.J Exp Bot 59, 2757-2767.
[23] Donnelly PK, Hegde RS, Fletcher JS (1994). Growth of PCB-degrading bacteria on compounds from photosynthetic plants.Chemosphere 28, 981-988.
[24] Fletcher JS, Hegde RS (1995). Release of phenols by perennial plant roots and their potential importance in bioremediation.Chemosphere 31, 3009-3016.
[25] Huesemann MH, Hausmann TS, Fortman TJ, Thom RM, Cullinan V (2009). In situ phytoremediation of PAH- and PCB-contaminated marine sediments with eelgrass(Zostera marina). Ecol Eng 35, 1395-1404.
[26] Jefferson RA, Kavanagh TA, Bevan MW (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants.EMBO J 6, 3901-3907.
[27] Liu JY, Schnoor JL (2008). Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure.Chemosphere 73, 1608-1616.
[28] Martinez A, Erdman NR, Rodenburg ZL, Eastling PM, Hornbuckle KC (2012). Spatial distribution of chlordanes and PCB congeners in soil in Cedar Rapids, lowa, USA.Environ Pollut 161, 222-228.
[29] Schulz H (1887). Zur Lehre von der Arzneiwirkung.Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin 108, 423-445.
[30] Solorzano-Ochoa G, de la Rosa DA, Maiz-Larralde P, Gullett BK, Tabor DG, Touati A, Wyrzykowska-Ceradini B, Fiedler H, Abel T, Carroll WF (2012). Open burning of household waste: effect of experimental condition on combustion quality and emission of PCDD, PCDF and PCB.Chemosphere 87, 1003-1008.
[31] Sorin C, Bussell JD, Camus I, Ljung K, Kowalczyk M, Geiss G, McKhann H, Garcion C, Vaucheret H, Sandberg G, Bellini C (2005). Auxin and light control of adventitious rooting in Arabidopsis require ARGONAU- TE1.Plant Cell 17, 1343-1359.
[32] Southam CM, Erlich J (1943). Effects of extract of western red-cedar heartwood on certain wood-decaying fungi in culture.Phytopathology 33, 517-524.
[33] Stebbing ARD (1982). Hormesis—The stimulation of growth by low levels of inhibitors.Sci Total Environ 22, 213-234.
[34] Surpin M, Rojas-Pierce M, Carter C, Hicks GR, Vasquez J, Raikhel NV (2005). The power of chemical genomics to study the link between endomembrane system components and the gravitropic response.Proc Natl Acad Sci USA 102, 4902-4907.
[35] Ulmasov T, Murfett J, Hagen G, Guilfoyle TJ (1997). Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements.Plant Cell 9, 1963-1971.
[36] Verbeke P, Clark BFC, Rattan SIS (2000). Modulating cellular aging in vitro: hormetic effects of repeated mild heat stress on protein oxidation and glycation. Exp Gerontol 35, 787-794.
[37] Xu J, Yin HX, Liu XJ, Li X (2010). Salt affects plant Cd- stress responses by modulating growth and Cd accumulation.Planta 231, 449-459.
[38] Zeeb BA, Amphlett JS, Rutter A, Reimer KJ (2006). Potential for phytoremediation of polychlorinated biphenyl-(PCB)-contaminated soil.Int J Phytoremediat 8, 199-221.
[39] Zhang Y, Luo XJ, Mo L, Wu JP, Mai BX, Peng YH (2015). Bioaccumulation and translocation of polyhalogenated compounds in rice (Oryza sativa L.) planted in paddy soil collected from an electronic waste recycling site, South China. Chemosphere 137, 25-32.
Outlines

/