EXPERIMENTAL COMMUNICATIONS

Genome-wide Characterization of bZIP Transcription Factors in Foxtail Millet and Their Expression Profiles in Response to Drought and Salt Stresses

Expand
  • 1Institute of Molecular Agriculture & Bioenergy, Shanxi Agricultural University, Taigu 030801, China
    2Department of Life Sciences, Shanxi Agricultural University, Taigu 030801, China

# Co-first authors

Received date: 2015-08-18

  Accepted date: 2016-03-25

  Online published: 2018-08-09

Abstract

The bZIP protein family is one of the largest and most conserved transcription factor families regulating multiple physiology processes in plants. Foxtail millet (Setaria italica) is an important C4 cereal crop with increased resistance to drought stress. However, little is known about bZIP family members and their functions in this crop. In the present study, we identified and characterized 73 SibZIP transcription factors in foxtail millet genome by using bioinformatics. These SibZIPs are classified into 9 groups, including A, B, C, D, E, G, H, I and X subfamilies. Compared to the sequenced cereal crops, the foxtail millet bZIP family underwent contraction in evolution. In all, 25 conserved motifs were detected among SibZIPs. RNA-seq and qPCR analysis revealed that a number of SibZIPs are induced to change expression levels in response to drought and salt stresses, which suggests that they have important functions in the foxtail millet response to stress. Moreover, correlation analysis of co-expression of the protein coding genes under various stress conditions demonstrates that a set of 19 SibZIPs may mediate the regulation network controlling stress responses by cooperating with some protein kinases or NPR1-related regulatory protein in foxtail millet. Our results could provide new valuable information for comprehensively understanding SibZIP protein structure and their biological functions, the molecular mechanism of drought response, and stress resistance breeding in foxtail millet and related crops.

Cite this article

Baoling Liu, Li Zhang, Yan Sun,Jinai Xue, Changyong Gao, Lixia Yuan, Jiping Wang, Xiaoyun Jia, Runzhi Li . Genome-wide Characterization of bZIP Transcription Factors in Foxtail Millet and Their Expression Profiles in Response to Drought and Salt Stresses[J]. Chinese Bulletin of Botany, 2016 , 51(4) : 473 -487 . DOI: 10.11983/CBB15148

References

1 曹红利, 岳川, 王新超, 杨亚军 (2012). bZIP转录因子与植物抗逆性研究进展. 南方农业学报 43, 1094-1100.
2 杨颖, 高世庆, 唐益苗, 冶晓芳, 王永波, 刘美英, 赵昌平 (2009). 植物bZIP转录因子的研究进展. 麦类作物学报 29, 730-737.
3 张水军, 曾千春, 卢秀萍, 李文正 (2010). 植物富含甘氨酸蛋白的研究进展. 中国农学通报 26(4), 54-58.
4 朱芸晔, 薛冰, 王安全, 王文杰, 周昂, 黄胜雄, 刘永胜 (2014). 番茄bZIP转录因子家族的生物信息学分析. 应用与环境生物学报 (5), 767-774.
5 Abe M, Kobayashi Y, Yamamoto S, Daimon Y, Yamaguchi A, Ikeda Y, Ichinoki H, Notaguchi M, Goto K, Araki T (2005). FD, a bZIP protein mediating signals from the floral pathway integrator FT at the shoot apex.Science 309, 1052-1056.
6 Baloglu MC, Eldem V, Hajyzadeh M, Unver T (2014). Genome-wide analysis of the bZIP transcription factors in cucumber.PLoS One 9, e96014.
7 Bennetzen JL, Schmutz J, Wang H, Percifield R, Hawkins J, Pontaroli AC, Estep M, Feng L, Vaughn JN, Grimwood J, Jenkins J, Barry K, Lindquist E, Hellsten U, Deshpande S, Wang X, Wu X, Mitros T, Triplett J, Yang X, Ye CY, Mauro-Herrera M, Wang L, Li P, Sharma M, Sharma R, Ronald PC, Panaud O, Kellogg EA, Brutnell TP, Doust AN, Tuskan GA, Rokhsar D, Devos KM (2012). Reference genome sequence of the model plant Setaria.Nat Biotechnol 30, 555-561.
8 Chuang CF, Running MP, Williams RW, Meyerowitz EM (1999). The PERIANTHIA gene encodes a bZIP protein involved in the determination of floral organ number in Arabidopsis thaliana.Genes Devel 13, 334-344.
9 Corrêa LG, Riaño-Pachón DM, Schrago CG, Dos Santos RV, Mueller-Roeber B, Vincentz M (2008). The role of bZIP transcription factors in green plant evolution: adaptive features emerging from four founder genes.PLoS One 3, e2944.
10 Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez MM, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozaki K (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis.Plant Cell 17, 3470-3488.
11 Gibalová A, Renák D, Matczuk K, Dupl'áková N, Cháb D, Twell D, Honys D (2009). AtbZIP34 is required for Arabidopsis pollen wall patterning and the control of several metabolic pathways in developing pollen.Plant Mol Biol 70, 581-601.
12 Guiltinan MJ, Marcotte WR Jr, Quatrano RS (1990). A plant leucine zipper protein that recognizes an abscisic acid response element.Science 250, 267-271.
13 Iven T, Strathmann A, Böttner S, Zwafink T, Heinekamp T, Guivarc'h A, Roitsch T, Dröge-Laser W (2010). Homo- and heterodimers of tobacco bZIP proteins counteract as positive or negative regulators of transcription during pollen development.Plant J Cell Mol Biol 63, 155-166.
14 Izawa T, Foster R, Nakajima M, Shimamoto K, Chua NH (1994). The rice bZIP transcriptional activator RITA-1 is highly expressed during seed development.Plant Cell 6, 1277-1287.
15 Jakoby M, Weisshaar B, Dröge-Laser W, Vicente-Carba- josa J, Tiedemann J, Kroj T, Parcy F, BZIPRG (2002). bZIP transcription factors in Arabidopsis.Trends Plant Sci 7, 106-111.
16 Jin Z, Xu W, Liu A (2014). Genomic surveys and expression analysis of bZIP gene family in castor bean (Ricinus communis L.).Planta 239, 299-312.
17 Johnson C, Boden E, Arias J (2003). Salicylic acid and NPR1 induce the recruitment of trans-activating TGA factors to a defense gene promoter in Arabidopsis.Plant Cell 15, 1846-1858.
18 Lee SC, Choi HW, Hwang IS, Choi DS, Hwang BK (2006). Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses.Planta 224, 1209-1225.
19 Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY (2008). Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis.Planta 228, 225-240.
20 Liu J, Chen N, Chen F, Cai B, Dal Santo S, Tornielli GB, Pezzotti M, Cheng ZM (2014). Genome-wide analysis and expression profile of the bZIP transcription factor gene family in grapevine (Vitis vinifera).BMC Genomics 15, 281.
21 Liu JX, Srivastava R, Howell SH (2008). Stress-induced expression of an activated form of AtbZIP17 provides protection from salt stress in Arabidopsis.Plant Cell Environ 31, 1735-1743.
22 Nijhawan A, Jain M, Tyagi AK, Khurana JP (2008). Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice.Plant Physiol 146, 333-350.
23 Pourabed E, Ghane Golmohamadi F, Soleymani Monfared P, Razavi SM, Shobbar ZS (2015). Basic leucine zipper family in barley: genome-wide characterization of members and expression analysis.Mol Biotechnol 57, 12-26.
24 Schultz J, Milpetz F, Bork P, Ponting CP (1998). SMART, a simple modular architecture research tool: identification of signaling domains.Proc Natl Acad Sci USA 95, 5857-5864.
25 Schwechheimer C, Zourelidou M, Bevan MW (1998). Plant transcription factor studies.Annu Rev Plant Physiol Plant Mol Biol 49, 127-150.
26 Singh K, Foley RC, Oñate-Sánchez L (2002). Transcription factors in plant defense and stress responses.Curr Opin Plant Biol 5, 430-436.
27 Stanković B, Vian A, Henry-Vian C, Davies E (2000). Molecular cloning and characterization of a tomato cDNA encoding a systemically wound-inducible bZIP DNA- binding protein.Planta 212, 60-66.
28 Toh S, McCourt P, Tsuchiya Y (2012). HY5 is involved in strigolactone-dependent seed germination in Arabidopsis.Plant Signal Behavior 7, 556-558.
29 Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid- dependent signal transduction pathway under drought and high-salinity conditions.Proc Natl Acad Sci USA 97, 11632-11637.
30 Wang J, Zhou J, Zhang B, Vanitha J, Ramachandran S, Jiang SY (2011). Genome-wide expansion and expression divergence of the basic leucine zipper transcription factors in higher plants with an emphasis on sorghum.J Integr Plant Biol 53, 212-231.
31 Wei K, Chen J, Wang Y, Chen Y, Chen S, Lin Y, Pan S, Zhong X, Xie D (2012). Genome-wide analysis of bZIP- encoding genes in maize.DNA Res 19, 463-476.
32 Xiang Y, Tang N, Du H, Ye H, Xiong L (2008). Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice.Plant Physiol 148, 1938-1952.
33 Xu J, Li Y, Ma X, Ding J, Wang K, Wang S, Tian Y, Zhang H, Zhu XG (2013). Whole transcriptome analysis using next-generation sequencing of model species Setaria viridis to support C4 photosynthesis research.Plant Mol Biol 83, 77-87.
34 Ying S, Zhang DF, Fu J, Shi YS, Song YC, Wang TY, Li Y (2012). Cloning and characterization of a maize bZIP transcription factor, ZmbZIP72, confers drought and salt tolerance in transgenic Arabidopsis.Planta 235, 253-266.
35 Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010). AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation.Plant J 61, 672-685.
36 Zhang G, Liu X, Quan Z, Cheng S, Xu X, Pan S, Xie M, Zeng P, Yue Z, Wang W, Tao Y, Bian C, Han C, Xia Q, Peng X, Cao R, Yang X, Zhan D, Hu J, Zhang Y, Li H, Li H, Li N, Wang J, Wang C, Wang R, Guo T, Cai Y, Liu C, Xiang H, Shi Q, Huang P, Chen Q, Li Y, Wang J, Zhao Z, Wang J (2012). Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential.Nat Biotechnol 30, 549-554.
Outlines

/

674-3466/bottom_en.htm"-->