[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
EXPERIMENTAL COMMUNICATIONS

Preliminary Functional Analysis of Microtubule-associated Protein GMAP65-1 from Gerbera hybrida

Expand
  • Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China

Received date: 2014-03-14

  Revised date: 2014-11-01

  Online published: 2015-04-09

Abstract

Microtubule-associated proteins play vital roles in plant growth and development. We cloned a full cDNA encoding microtubule-associated protein GMAP65-1 by RT-PCR and RACE techniques and characterized the clone. The complete cDNA (1 883 bp) contains a 1 740-bp open reading frame encoding 579 amino acid residues. The gene expression of GMAP65-1 was higher in young roots, leaves and ray florets. Moreover, its expression was induced by gibberellin. Overexpression of GMAP65-1 in transgenic Arabidopsis enlarged the area of leaf and petal. GMAP65-1 might be involved in leaf and petal morphogenesis. This study contributes to providing the theoretical basis and gene resources for flower molecular breeding of Gerbera.

Cite this article

Lingfei Li, Jianzong Peng, Xiaojing Wang . Preliminary Functional Analysis of Microtubule-associated Protein GMAP65-1 from Gerbera hybrida[J]. Chinese Bulletin of Botany, 2015 , 50(1) : 12 -21 . DOI: 10.3724/SP.J.1259.2015.00012

[an error occurred while processing this directive]

References

1 黄先忠, 蒋才富, 廖立力, 傅向东 (2006). 赤霉素作用机理的分子基础与调控模式研究进展. 植物学通报 23, 499-510.
2 任怡怡, 戴绍军, 刘炜 (2012). 生长素的运输及其在信号转导及植物发育中的作用. 生物技术通报 (3), 9-16.
3 张丽丽 (2011). 非洲菊花瓣形态建成的研究. 博士论文. 广州: 华南师范大学. pp. 19-37.
4 Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP (2007). The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA 104, 6484-6489.
5 Achard P, Gusti A, Cheminant S, Alioua M, Dhondt S, Coppens F, Beemster GT, Genschik P (2009). Gibberellin signaling controls cell proliferation rate in Arabidopsis. Curr Biol 19, 1188-1193.
6 Ambrose C, Ruan Y, Gardiner J, Tamblyn LM, Catching A, Kirik V, Marc J, Overall R, Wasteneys GO (2013). CLASP interacts with sorting nexin 1 to link microtubules and auxin transport via PIN2 recycling in Arabidopsis thaliana . Dev Cell 24, 649-659.
7 Broholm SK, Tähtiharju S, Laitinen RAE, Albert VA, Teeri TH, Elomaa P (2008). A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence. Proc Natl Acad Sci USA 105, 9117-9122.
8 Chan J, Jensen CG, Jensen LCW, Bush M, Lloyd CW (1999). The 65-kDa carrot microtubule-associated protein forms regularly arranged filamentous cross-bridges between microtubules. Proc Natl Acad Sci USA 96, 14931-14936.
9 Chan J, Mao GJ, Smertenko A, Hussey PJ, Naldrett M, Bottrill A, Lloyd CW (2003). Identification of a MAP65 isoform involved in directional expansion of plant cells. FEBS Lett 534, 161-163.
10 Clough SJ, Bent AF (1998). Floral dip: a simplified method for Agrobacterium -mediated transformation of Arabidop- sis thaliana . Plant J 16, 735-743.
11 Davis SJ (2009). Integrating hormones into the floral- transition pathway of Arabidopsis thaliana . Plant Cell Environ 32, 1201-1210.
12 Domagalska MA, Sarnowska E, Nagy F, Davis SJ (2010). Genetic analyses of interactions among gibberellin, abscisic acid, and brassinosteroids in the control of flowering time in Arabidopsis thaliana . PLoS One 5, e14012.
13 Fache V, Gaillard J, Van Damme D, Geelen D, Neumann E, Stoppin-Mellet V, Vantard M (2010). Arabidopsis kinetochore fiber-associated MAP65-4 cross-links micro- tubules and promotes microtubule bundle elongation. Plant Cell 22, 3804-3815.
14 Gaillard J, Neumann E, Van Damme D, Stoppin-Mellet V, Ebel C, Barbier E, Geelen D, Vantard M (2008). Two microtubule-associated proteins of Arabidopsis MAP65s promote antiparallel microtubule bundling. Mol Biol Cell 19, 4534-4544.
15 Gardiner J (2013). The evolution and diversification of plant microtubule-associated proteins. Plant J 75, 219-229.
16 Hou ZX, Huang WD (2005). Immunohistochemical localiza- tion of IAA and ABP1 in strawberry shoot apexes during floral induction. Planta 222, 678-687.
17 Jiang CJ, Sonobe S (1993). Identification and preliminary characterization of a 65 kDa higher-plant microtubule- associated protein. J Cell Sci 105, 891-901.
18 Kakar K, Zhang HT, Scheres B, Dhonukshe P (2013). CLASP-mediated cortical microtubule organization guides PIN polarization axis. Nature 495, 529-533.
19 Krajnčič B, Nemec J (2003). Mechanisms of EDDHA effects on the promotion of floral induction in the long-day plant Lemna minor (L.). J Plant Physiol 160, 143-151.
20 Kuang Q, Li LF, Peng JZ, Sun SL, Wang XJ (2013). Transcriptome analysis of Gerbera hybrida ray florets: putative genes associated with gibberellin metabolism and signal transduction. PLoS One 8, e57715.
21 Li JH, Li YH, Chen SY, An LZ (2010). Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J Exp Bot 61, 4221-4230.
22 Lucas JR, Courtney S, Hassfurder M, Dhingra S, Bryant A, Shaw SL (2011). Microtubule-associated proteins MAP65-1 and MAP65-2 positively regulate axial cell growth in etiolated Arabidopsis hypocotyls. Plant Cell 23, 1889-1903.
23 Lucas JR, Shaw SL (2012). MAP65-1 and MAP65-2 promote cell proliferation and axial growth in Arabidopsis roots. Plant J 71, 454-463.
24 Mao GJ, Buschmann H, Doonan JH, Lloyd CW (2006). The role of MAP65-1 in microtubule bundling during Zinnia tracheary element formation. J Cell Sci 119, 753-758.
25 Mao TL, Jin LF, Li H, Liu B, Yuan M (2005). Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules. Plant Physiol 138, 654-662.
26 Meng QT, Du JZ, Li JJ, Lü XM, Zeng XA, Yuan M, Mao TL (2010). Tobacco microtubule-associated protein, MAP65- 1c, bundles and stabilizes microtubules. Plant Mol Biol 74, 537-547.
27 Meng XC, Wang XJ (2004). Regulation of flower devel- opment and anthocyanin accumulation in Gerbera hybrida . J Hortic Sci Biotech 79, 131-137.
28 Nick P (2012). Microtubules and the tax payer. Protoplasma 249, 81-94.
29 Panteris E, Komis G, Adamakis IDS, Samaj J, Bos- abalidis AM (2010). MAP65 in tubulin/colchicine paracry- stals of Vigna sinensis root cells: possible role in the assembly and stabilization of atypical tubulin polymers. Cytoskeleton ( Hoboken ) 67, 152-160.
30 Razem FA, Baron K, Hill RD (2006). Turning on gibberellin and abscisic acid signaling. Curr Opin Plant Biol 9, 454- 459.
31 Riboni M, Galbiati M, Tonelli C, Conti L (2013). GIGAN- TEA enables drought escape response via abscisic acid-dependent activation of the florigens and SUPPRE- SSOR OF OVEREXPRESSION OF CONSTANS . Plant Physiol 162, 1706-1719.
32 Schuyler SC, Liu JY, Pellman D (2003). The molecular function of Ase1p: evidence for a MAP-dependent midzone-specific spindle matrix. Microtubule-associated proteins. J Cell Biol 160, 517-528.
33 Sedbrook JC (2004). MAPs in plant cells: delineating microtubule growth dynamics and organization. Curr Opin Plant Biol 7, 632-640.
34 Sedbrook JC, Kaloriti D (2008). Microtubules, MAPs and plant directional cell expansion. Trends Plant Sci 13, 303- 310.
35 Shimada A, Yamane H, Kimura Y (2005). Interaction between aspterric acid and indole-3-acetic acid on reproductive growth in Arabidopsis thaliana . Z Na- turforsch C 60, 572-576.
36 Smertenko A, Saleh N, Igarashi H, Mori H, Hauser-Hahn I, Jiang CJ, Sonobe S, Lloyd CW, Hussey PJ (2000). A new class of microtubule-associated proteins in plants. Nat Cell Biol 2, 750-753.
37 Smertenko AP, Chang HY, Wagner V, Kaloriti D, Fenyk S, Sonobe S, Lloyd C, Hauser MT, Hussey PJ (2004). The Arabidopsis microtubule-associated protein AtMAP65-1: molecular analysis of its microtubule bundling activity. Plant Cell 16, 2035-2047.
38 Thingnaes E, Torre S, Ernstsen A, Moe R (2003). Day and night temperature responses in Arabidopsis: effects on gibberellin and auxin content, cell size, morphology and flowering time. Ann Bot 92, 601-612.
39 Van Damme D, Van Poucke K, Boutant E, Ritzenthaler C, Inzé D, Geelen D (2004). In vivo dynamics and differential microtubule-binding activities of MAP65 proteins. Plant Physiol 136, 3956-3967.
40 Zhang LL, Li LF, Wu J, Peng JZ, Zhang LR, Wang XJ (2012a). Cell expansion and microtubule behavior in ray floret petals of Gerbera hybrida : responses to light and gibberellic acid. Photochem Photobiol Sci 11, 279-288.
41 Zhang Q, Lin F, Mao TL, Nie JN, Yan M, Yuan M, Zhang WH (2012b). Phosphatidic acid regulates microtubule organization by interacting with MAP65-1 in response to salt stress in Arabidopsis. Plant Cell 24, 4555-4576.
42 Zhu Y, Zuo MX, Liang YL, Jiang MY, Zhang JH, Scheller HV, Tan MP, Zhang AY (2013). MAP65-1a positively regulates H 2 O 2 amplification and enhances brassinos- teroid-induced antioxidant defence in maize. J Exp Bot 64, 3787-3802.
Outlines

/

[an error occurred while processing this directive]