张俊红, 张守攻, 吴涛, 韩素英, 杨文华, 齐力旺 (2012). 落叶松体胚发育中5个miRNA前体与成熟体的表达. 植物学报 47, 462–473.
Ameres SL, Horwich MD, Hung JH, Xu J, Ghildiyal M, Weng Z, Zamore PD (2010). Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539.
Arvey A, Larsson E, Sander C, Leslie CS, Marks DS (2010). Target mRNA abundance dilutes microRNA and siRNA activity. Mol Syst Biol 6, 363.
Axtell MJ, Bartel DP (2005). Antiquity of microRNAs and their targets in land plants. Plant Cell 17, 1658–1673.
Baccarini A, Chauhan H, Gardner TJ, Jayaprakash AD, Sachidanandam R, Brown BD (2011). Kinetic analysis reveals the fate of a microRNA following target regulation in mammalian cells. Curr Biol 21, 369–376.
Bail S, Swerdel M, Liu H, Jiao X, Goff LA, Hart RP, Kiledjian M (2010). Differential regulation of microRNA stability. RNA 16, 1032–1039.
Baumberger N, Baulcombe DC (2005). Arabidopsis ARGONAUTE1 is an RNA Slicer that selectively recruits microRNAs and short interfering RNAs. Proc Natl Acad Sci U S A 102, 11928–11933.
Burroughs AM, Ando Y, de Hoon MJ, Tomaru Y, Nishibu T, Ukekawa R, Funakoshi T, Kurokawa T, Suzuki H, Hayashizaki Y, Daub CO (2010). A comprehensive survey of 3' animal miRNA modification events and a possible role for 3' adenylation in modulating miRNA targeting effectiveness. Genome Res 20, 1398–1410.
Cai X, Hagedorn CH, Cullen BR (2004). Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 10, 1957–1966.
Chatterjee S, Grosshans H (2009). Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461, 546–549.
Chekanova JA, Gregory BD, Reverdatto SV, Chen H, Kumar R, Hooker T, Yazaki J, Li P, Skiba N, Peng Q, Alonso J, Brukhin V, Grossniklaus U, Ecker JR, Belostotsky DA (2007). Genome-wide high-resolution mapping of exosome substrates reveals hidden features in the Arabidopsis transcriptome. Cell 131, 1340–1353.
Chen Y, Sinha K, Perumal K, Reddy R (2000). Effect of 3' terminal adenylic acid residue on the uridylation of human small RNAs in vitro and in frog oocytes. RNA 6, 1277–1288.
Diederichs S, Haber DA (2007). Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 131, 1097–1108.
Estevez AM, Lehner B, Sanderson CM, Ruppert T, Clayton C (2003). The roles of intersubunit interactions in exosome stability. J Biol Chem 278, 34943–34951.
Fernandez-Valverde SL, Taft RJ, Mattick JS (2010). Dynamic isomiR regulation in Drosophila development. RNA 16, 1881–1888.
Floyd SK, Bowman JL (2004). Gene regulation: ancient microRNA target sequences in plants. Nature 428, 485–486.
Gatfield D, Le Martelot G, Vejnar CE, Gerlach D, Schaad O, Fleury-Olela F, Ruskeepaa AL, Oresic M, Esau CC, Zdobnov EM, Schibler U (2009). Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 23, 1313–1326.
Ibrahim F, Rymarquis LA, Kim EJ, Becker J, Balassa E, Green PJ, Cerutti H (2010). Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc Natl Acad Sci U S A 107, 3906–3911.
Jones-Rhoades MW, Bartel DP, Bartel B (2006). MicroRNAs and Their Regulatory Roles in Plants. Annu. Rev. Plant Biol. 57, 19–53.
Jones MR, Quinton LJ, Blahna MT, Neilson JR, Fu S, Ivanov AR, Wolf DA, Mizgerd JP (2009). Zcchc11-dependent uridylation of microRNA directs cytokine expression. Nat Cell Biol 11, 1157–1163.
Kai ZS, Pasquinelli AE (2010). MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nat Struct Mol Biol 17, 5–10.
Katoh T, Sakaguchi Y, Miyauchi K, Suzuki T, Kashiwabara S, Baba T (2009). Selective stabilization of mammalian microRNAs by 3' adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev 23, 433–438.
Kim S, Lee UJ, Kim MN, Lee EJ, Kim JY, Lee MY, Choung S, Kim YJ, Choi YC (2008). MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). Journal of Biological Chemistry 283, 18158–18166.
Kozomara A, Griffiths-Jones S (2011). miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39, 152–157.
Kurihara Y, Takashi Y, Watanabe Y (2006). The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12, 206–212.
Lee RC, Feinbaum RL, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854.
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004). MicroRNA genes are transcribed by RNA polymerase II. Embo J 23, 4051– 4060.
Li J, Yang Z, Yu B, Liu J, Chen X (2005). Methylation protects miRNAs and siRNAs from a 3'-end uridylation activity in Arabidopsis. Curr Biol 15, 1501–1507.
Lobbes D, Rallapalli G, Schmidt DD, Martin C, Clarke J (2006). SERRATE: a new player on the plant microRNA scene. Embo Rep 7, 1052–1058.
Lu S, Sun YH, Chiang VL (2009). Adenylation of plant miRNAs. Nucleic Acids Res 37, 1878–1885.
Meng Y, Shao C, Wang H, Chen M (2011). The Regulatory Activities of Plant MicroRNAs: A More Dynamic Perspective. Plant Physiol 157, 1583–1595.
Okamura K, Phillips MD, Tyler DM, Duan H, Chou YT, Lai EC (2008). The regulatory activity of microRNA* species has substantial influence on microRNA and 3' UTR evolution. Nat Struct Mol Biol 15, 354–363.
Parizotto EA, Dunoyer P, Rahm N, Himber C, Voinnet O (2004). In vivo investigation of the transcription, processing, endonucleolytic activity, and functional relevance of the spatial distribution of a plant miRNA. Genes Dev 18, 2237–2242.
Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005). Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci U S A 102, 3691–3696.
Ramachandran V, Chen X (2008). Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321, 1490–1492.
Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002). MicroRNAs in plants. Genes Dev 16, 1616–1626.
Vazquez F, Gasciolli V, Crete P, Vaucheret H (2004). The nuclear dsRNA binding protein HYL1 is required for MicroRNA accumulation and plant development, but not posttranscriptional transgene silencing. Current Biology 14, 346–351.
Wyman SK, Knouf EC, Parkin RK, Fritz BR, Lin DW, Dennis LM, Krouse MA, Webster PJ, Tewari M (2011). Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity. Genome Res 21, 1450–1461.
Yakovlev IA, Fossdal CG, Johnsen O (2010). MicroRNAs, the epigenetic memory and climatic adaptation in Norway spruce. New Phytol 187, 1154–1169.
Yang L, Liu ZQ, Lu F, Dong AW, Huang H (2006). SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis. Plant J 47, 841–850.
Zhang JH, Zhang SG, Han SY, Wu T, Li XM, Li WF, Qi LW (2012). Genome-wide identification of microRNAs in larch and stage-specific modulation of 11 conserved microRNAs and their targets during somatic embryogenesis. Planta 236, 647–657.
Zhang JH, Zhang SG, Li SG, Han SY, Wu T, Li XM, Qi LW (2013). A genome-wide survey of microRNA truncation and 3' nucleotide addition events in larch (Larix leptolepis). Planta 237, 1047–1056.