Castelló MJ, Medina-Puche L, Lamilla J, and Tornero P (2018). NPR1 paralogs of Arabidopsis and their role in salicylic acid perception. PLOS ONE 13, e0209835.
Choi HW, and Klessig DF (2016). DAMPs, MAMPs, and NAMPs in plant innate immunity. BMC Plant Biology 16, 232.
Ding Y, Sun T, Ao K, Peng Y, Zhang Y, Li X, and Zhang Y (2018). Opposite roles of salicylic acid receptors NPR1 and NPR3/NPR4 in Transcriptional regulation of plant immunity. Cell 173, 1454-1467.e1415.
Fang X, Xie Y, Yuan Y, Long Q, Zhang L, Abid G, and Zhang W (2025). The role of salicylic acid in plant defense responses against biotic stresses. Plant Hormones 1, e004.
Fu ZQ, and Dong X (2013). Systemic acquired resistance: turning local Infection into global defense. Annual Review of Plant Biology 64, 839-863.
Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H, and Ryals J (1993). Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261, 754-756.
Huang W, Wang Y, Li X, and Zhang Y (2020). Biosynthesis and regulation of salicylic acid and N-hydroxypipecolic acid in plant immunity. Molecular Plant 13, 31-41.
Jones JDG, and Dangl JL (2006). The plant immune system. Nature 444, 323-329.
Kumar S, Zavaliev R, Wu Q, Zhou Y, Cheng J, Dillard L, Powers J, Withers J, Zhao J, Guan Z, Borgnia MJ, Bartesaghi A, Dong X, and Zhou P (2022). Structural basis of NPR1 in activating plant immunity. Nature 605, 561-566.
Li Q, Zhou M, Chhajed S, Yu F, Chen S, Zhang Y, and Mou Z (2023). N-hydroxypipecolic acid triggers systemic acquired resistance through extracellular NAD(P). Nature Communications 14, 6848.
Lim G-H (2023). Regulation of salicylic acid and N-hydroxy-pipecolic acid in systemic acquired resistance. Plant Pathol J 39, 21-27.
Liu Y, Xu L, Wu M, Wang J, Qiu D, Lan J, Lu J, Zhang Y, Li X, and Zhang Y (2025). Three-step biosynthesis of salicylic acid from benzoyl-CoA in plants. Nature, doi.org/10.1038/s41586-41025-09185-41587.
Pajerowska-Mukhtar Karolina M, Wang W, Tada Y, Oka N, Tucker Chandra L, Fonseca Jose P, and Dong X (2012). The HSF-like transcription factor TBF1 is a major molecular switch for plant growth-to-defense transition. Current Biology 22, 103-112.
Peng Y, Yang J, Li X, and Zhang Y (2021). Salicylic acid: biosynthesis and signaling. Annual Review of Plant Biology 72, 761-791.
Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, and Van Wees SCM (2012). Hormonal modulation of plant immunity. Annual Review of Cell and Developmental Biology 28, 489-521.
Rekhter D, Lüdke D, Ding Y, Feussner K, Zienkiewicz K, Lipka V, Wiermer M, Zhang Y, and Feussner I (2019). Isochorismate-derived biosynthesis of the plant stress hormone salicylic acid. Science 365, 498-502.
Saleh A, Withers J, Mohan R, Marqués J, Gu Y, Yan S, Zavaliev R, Nomoto M, Tada Y, and Dong X (2015). Posttranslational modifications of the master transcriptional regulator NPR1 enable dynamic but tight control of plant immune responses. Cell Host & Microbe 18, 169-182.
Seguel A, Jelenska J, Herrera-Vásquez A, Marr SK, Joyce MB, Gagesch KR, Shakoor N, Jiang S-C, Fonseca A, Wildermuth MC, Greenberg JT, and Holuigue L (2018). PROHIBITIN3 forms complexes with ISOCHORISMATE SYNTHASE1 to regulate stress-induced salicylic acid biosynthesis in Arabidopsis. Plant Physiology 176, 2515-2531.
Spoel SH, and Dong X (2024). Salicylic acid in plant immunity and beyond. The Plant Cell 36, 1451-1464.
Sun T, Zhang Y, Li Y, Zhang Q, Ding Y, and Zhang Y (2015). ChIP-seq reveals broad roles of SARD1 and CBP60g in regulating plant immunity. Nature Communications 6, 10159.
Ullah C, Chen Y-H, Ortega MA, and Tsai C-J (2023). The diversity of salicylic acid biosynthesis and defense signaling in plants: Knowledge gaps and future opportunities. Current Opinion in Plant Biology 72, 102349.
Vlot AC, Dempsey D, apos, Amick M, and Klessig DF (2009). Salicylic acid, a multifaceted hormone to combat disease. Annual Review of Phytopathology 47, 177-206.
Wang D, Weaver ND, Kesarwani M, and Dong X (2005). Induction of protein secretory pathway is required for systemic acquired resistance. Science 308, 1036-1040.
Wang Y, Song S, Zhang W, Deng Q, Feng Y, Tao M, Kang M, Zhang Q, Yang L, Wang X, Zhu C, Wang X, Zhu W, Zhu Y, Cao P, Chen J, Pan J, Feng S, Chen X, Dai H, Song S, Yang J, Zhao T, Cao F, Tao Z, Shen X, Last RL, Hu J, Yu J, Fan P, and Pan R (2025). Deciphering phenylalanine-derived salicylic acid biosynthesis in plants. Nature, doi.org/10.1038/s41586-41025-09280-41589.
Wildermuth MC, Dewdney J, Wu G, and Ausubel FM (2001). Isochorismate synthase is required to synthesize salicylic acid for plant defence. Nature 414, 562-565.
Wu Y, Zhang D, Chu Jee Y, Boyle P, Wang Y, Brindle ID, De Luca V, and Després C (2012). The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Reports 1, 639-647.
Yamasaki K, Motomura Y, Yagi Y, Nomura H, Kikuchi S, Nakai M, and Shiina T (2013). Chloroplast envelope localization of EDS5, an essential factor for salicylic acid biosynthesis in Arabidopsis thaliana. Plant Signaling & Behavior 8, e23603.
Ye H, Hou Q, Lv H, Shi H, Wang D, Chen Y, Xu T, Wang M, He M, Yin J, Lu X, Tang Y, Zhu X, Zou L, Chen X, Li J, Wang B, and Wang J (2024). D53 represses rice blast resistance by directly targeting phenylalanine ammonia lyases. Journal of Integrative Plant Biology 66, 1827-1830.
Yokoo S, Inoue S, Suzuki N, Amakawa N, Matsui H, Nakagami H, Takahashi A, Arai R, and Katou S (2018). Comparative analysis of plant isochorismate synthases reveals structural mechanisms underlying their distinct biochemical properties. Bioscience Reports 38, BSR20171457.
Zavaliev R, and Dong X (2024). NPR1, a key immune regulator for plant survival under biotic and abiotic stresses. Molecular Cell 84, 131-141.
Zavaliev R, Mohan R, Chen T, and Dong X (2020). Formation of NPR1 condensates promotes cell survival during the plant immune response. Cell 182, 1093-1108.e1018.
Zhao Y, Zhu X, Chen X, and Zhou J-M (2022). From plant immunity to crop disease resistance. Journal of Genetics and Genomics 49, 693-703.
Zhou X, Liao H, Chern M, Yin J, Chen Y, Wang J, Zhu X, Chen Z, Yuan C, Zhao W, Wang J, Li W, He M, Ma B, Wang J, Qin P, Chen W, Wang Y, Liu J, Qian Y, Wang W, Wu X, Li P, Zhu L, Li S, Ronald PC, and Chen X (2018). Loss of function of a rice TPR-domain RNA-binding protein confers broad-spectrum disease resistance. Proceedings of the National Academy of Sciences 115, 3174-3179.
Zhu B, Zhang Y, Gao R, Wu Z, Zhang W, Zhang C, Zhang P, Ye C, Yao L, Jin Y, Mao H, Tou P, Huang P, Zhao J, Zhao Q, Liu C-J, and Zhang K (2025). Complete biosynthesis of salicylic acid from phenylalanine in plants. Nature, doi.org/10.1038/s41586-41025-09175-41589.
Zhu X, Yin J, Liang S, Liang R, Zhou X, Chen Z, Zhao W, Wang J, Li W, He M, Yuan C, Miyamoto K, Ma B, Wang J, Qin P, Chen W, Wang Y, Wang W, Wu X, Yamane H, Zhu L, Li S, and Chen X (2016). The multivesicular bodies (MVBs)-localized AAA ATPase LRD6-6 inhibits immunity and cell death likely through regulating MVBs-mediated vesicular trafficking in rice. PLOS Genetics 12, e1006311.
吴楠 覃, 彭志红, 夏石头 (2022). 系统获得性抗性移动信号Pip/NHP研究进展. 植物学报 57, 412-421.
张杰, 董莎萌, 王伟, 赵建华, 陈学伟, 郭惠珊, 何光存, 何祖华, 康振生, 李毅, 彭友良, 王国梁, 周雪平, 王源超, and 周俭民 (2019). 植物免疫研究与抗病虫绿色防控:进展、机遇与挑战. 中国科学:生命科学 49, 1479-1507.
朱孝波, 李伟滔, 贺闽, 王静, 于振良, and 陈学伟 (2020). 作物广谱抗病研究现状与关键科学问题. 中国科学基金 34, 401-410