RESEARCH ARTICLE

Cloning and Functional Analysis of 14-3-3 Protein gene TaGRF3-D in wheat (Triticum aestivum)

  • XUN Ru ,
  • GUO Shu-Juan ,
  • DIAO Hui-Xian ,
  • MA Meng ,
  • LIU Xiang-Li
Expand
  • College of Life Science, Northwest A&F University, Yangling 712100, China

Received date: 2024-10-17

  Revised date: 2025-03-04

  Online published: 2025-03-18

Abstract

INTRODUCTION: The 14-3-3 proteins are a highly conserved protein family that can specifically recognize phosphorylated target proteins playing a crucial role in plant abiotic stress responses. By interacting with AREBs/ABFs (ABA-responsive element binding proteins/ABA-responsive element binding factors) transcription factors, the 14-3-3 proteins can participate in ABA signal transduction and regulate abiotic stress tolerance. TaGRF3-D is a 14-3-3 protein in wheat (Triticum aestivum), our previous studies showed that the expression of this gene was up-regulated under ABA and abiotic stress.



RATIONALE: To explore the function of TaGRF3-D gene, the gene was cloned, and its subcellular localization and function on drought stress were investigated.



RESULTS: The results showed that the TaGRF3-D is highly conserved in monocotyledonous plants and is located in the nucleus and cell membrane. Compaired with wild type, the Arabidopsis thaliana transgenic lines overexpressed TaGRF3-D had significantly longer roots under PEG and ABA treatments, and demonstrated a significantly higher survival rate after drought stress. Further yeast two-hybrid analysis showed that the TaGRF3-D could interact with wheat TaABF3-B, TaABF4-A, TaABF15-D, TaABF16-B, TaABF17-D and TaABF18-B, but not with TaABF1-D, TaABF2-A and TaABF19-A.



CONCLUSION: These results indicate that TaABF3-D may respond to ABA signals by interacting with wheat TaABFs transcription factors, thereby enhancing drought stress tolerance of transgenic plants.




The phenotypes (A) and survival rates (B) of the TaGRF3-D transgenic lines and the wild type under drought stress



Cite this article

XUN Ru , GUO Shu-Juan , DIAO Hui-Xian , MA Meng , LIU Xiang-Li . Cloning and Functional Analysis of 14-3-3 Protein gene TaGRF3-D in wheat (Triticum aestivum)[J]. Chinese Bulletin of Botany, 0 : 1 -0 . DOI: 10.11983/CBB24156

References

[1]Aitken A(2006).proteins: a historic overview.Semin Cancer Biol, 16:162-172.
[2]Campo S, Peris-Peris C, Montesinos L, Pe?as G, Messeguer J, San Segundo B(2012).Expression of the maize ZmGF14-6 gene in rice confers tolerance to drought stress while enhancing susceptibility to pathogen infection.J Exp Bot, 63:983-99.
[3]Guo SJ, Sun Y, Zheng HY, Zhao HX, Ma M, Liu XL(2023).Genome-wide identification and expression analysis of ABFAREB ABI5 gene family in wheat (Triticum aestivum).J Agric Biotechnol, 31:667-681.郭树娟, 孙月, 郑昊元, 赵惠贤, 马猛, 刘香利(2023).小麦基因家族全基因组鉴定与表达分析.农业生物技术学报, 31:667-681.
[5]He Y, Zhang Y, Chen LH, Wu CL, Luo QC, Zhang F, Wei QH, Li KX, Chang JL, Yang GX, He GY (2017)(2017).A member of the 14-3-3 gene family in Brachypodium distachyon, BdGF14d, confers salt tolerance in transgenic tobacco plants. Front Plant Sci 8, 340..Front Plant Sci , 8:340-.
[6]Ho SL, Huang LF, Lu CA, He SL, Wang CC, Yu SP, Chen J, Yu SM(2013).Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings.Plant Mol Biol, 81:347-361.
[7]Huang Y, Wang WS, Yu H, Peng JH, Hu ZR, Chen L(2022).The role of 14-3-3 proteins in plant growth and response to abiotic stress.Plant Cell Rep, 41:833-852.
[8]Jiang W, Tong T, Li W, Huang ZH, Chen G, Zeng FR, Riaz A, Amoanimaa-Dede H, Pan R, Zhang WY, Deng FL, Chen ZH(2023).Molecular evolution of plant 14-3-3 proteins and function of Hv14-3-3A in stomatal regulation and drought tolerance.Plant Cell Physiol, 63:1857-1872.
[9]Johnson RR, Shin M, Shen JQ(2008).The wheat PKABA1-interacting factor TaABF1 mediates both abscisic acid-suppressed and abscisic acid-induced gene expression in bombarded aleurone cells.Plant Mol Biol, 68:93-103.
[10]Kaundal A, Ramu VS, Oh S, Lee S, Pant B, Lee HK, Rojas CM, Senthil-Kumar M, Mysore KS(2017).GENERAL CONTROL NONREPRESSIBLE4 degrades 14-3-3 and the RIN4 complex to regulate stomatal aperture with implications on nonhost disease resistance and drought tolerance.Plant Cell, 29:2233-2248.
[11]Kobayashi F, Maeta E, Terashima A, Takumi S(2008).Positive role of a wheat HvABI5 ortholog in abiotic stress response of seedlings.Physiol Plant, 134:74-86.
[12]Latz A, Becker D, Hekman M, Müller T, Beyhl D, Marten I, Eing C, Fischer A, Dunkel M, Bertl A, Rapp UR, Hedrich R(2008).TPK1,a Ca2+-regulated Arabidopsis vacuole two-pore K+ channel is activated by 14-3-3 proteins.Plant J, 54:963-963.
[13]Latz A, Mehlmer N, Zapf S, Mueller TD, Wurzinger B, Pfister B, Csaszar E, Hedrich R, Teige M, Becker D(2013).Salt stress triggers phosphorylation of the Arabidopsis vacuolar K+ channel TPK1 by calcium-dependent protein kinases (CDPKs).Mol plant, 6:1274-1289.
[14]Liu JP, Sun XJ, Liao WC, Zhang JH, Liang JS, Xu WF(2019).Involvement of OsGF14b Adaptation in the Drought Resistance of Rice Plants. Rice 12, 82..Rice, 12:82-.
[15]Ma YM, Wu ZY, Dong JF, Zhang SH, Zhao JL, Yang TF, Yang W, Zhou L, Wang J, Chen JS, Liu Q, Liu B(2023).The 14-3-3 protein OsGF14f interacts with OsbZIP23 and enhances its activity to confer osmotic stress tolerance in rice.Plant Cell, 35:4173-4189.
[16]Ren YR, Yang YY, Zhang R, You CX, Zhao Q, Hao YJ(2019).MdGRF11, an apple 14-3-3 protein, acts as a positive regulator of drought and salt tolerance. Plant Sci 288: 110219..Plant Sci , 288:110219-.
[17]Schoonheim PJ, Costa Pereira DD, De Boer AH(2009).Dual role for 14-3-3 proteins and ABF transcription factors in gibberellic acid and abscisic acid signalling in barley (Hordeum vulgare) aleurone cells.Plant Cell Environ, 32:439-447.
[18]Shao WN, Chen W, Zhu XG, Zhou XY, Jin YY, Zhan C, Liu GS, Liu X, Ma DF, Qiao YL(2021).Genome-wide identification and characterization of wheat 14-3-3 genes unravels the role of TaGRF6-A in salt stress tolerance by binding MYB transcription factor. Int J Mol Sci 22, 1904..Int J Mol Sci , 22:1904-.
[19]Shen YX (2018).Identification and Experssion Analysis of the 14-3-3 Gene Family in Triticum aestivum (L.). Master’s thesis. Yangling: Northwest A& F University. pp. 30–36. (in Chinese)., :-.
[20]申玉霞 (2018).小麦14-3-3蛋白基因家族鉴定和表达分析. 硕士论文. 杨凌: 西北农林科技大学. pp. 30–36.., :-.
[21]Sun XL, Sun MZ, Jia BW, Chen C, Qin ZW, Yang KJ, Shen Y, Meiping Z, Mingyang C, Zhu YM(2015).A 14-3-3 family protein from wild soybean (Glycine Soja) regulates ABA sensitivity in Arabidopsis. PLoS One 10, e0146163..PLoS One, 10:e0146163-.
[22]Yang L, You J, Wang YP, Li JZ, Quan WL, Yin MZ, Wang QF, Chan ZL(2017).Systematic analysis of the G-box Factor 14-3-3 gene family and functional characterization of GF14a in Brachypodium distachyon.Plant Physiol Biochem, 117:1-11.
[23]Zhang X, Henriques R, Lin SS, Niu QW, Chua NH(2006).Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method.Nat Protoc, 1:641-646.
[24]Zhang Y, He Y, Zhao HY, Zhang Y, Yang J, Ou XQ, Zhang JL, Zhu QD( 2023).A 14-3-3 protein-encoding gene, BdGF14g, confers better drought tolerance by regulating ABA biosynthesis and signaling. Plants 12, 3975..Plants , 12:3975-.
[25]Zhang Y, Zhao HY, Zhou SY, He Y, Luo QC, Zhang F, Qiu D, Feng JL, Wei QH, Chen LH, Chen MJ, Chang JL, Yang GX, He GY(2018).Expression of TaGF14b,a 14-3-3 adaptor protein gene from wheat,enhances drought and salt tolerance in transgenic tobacco.Planta, 248:117-137.
[26]Zhao X, Li F, Li K(2021).The 14-3-3 proteins: regulators of plant metabolism and stress responses.Plant Biol, 23:531-539.
Outlines

/