多光谱成像技术在植物学研究中的应用
王众司, 贾亚萍, 张瑾, 王若涵
植物学报
2021, 56 ( 4):
500-508.
DOI: 10.11983/CBB21002
多光谱成像(MSI)技术是一种新兴的成像检测技术, 通过将光谱与成像合二为一, 可实现植物结构、生理、生化表型的定性定量分析及其特征分布的评估。近年来, 与数学建模分析结合的MSI技术具有强大的信息捕获能力, 在植物学研究中展现出强劲的应用潜力。该文介绍了MSI技术的成像原理, 总结了近年来MSI技术在植物损伤鉴定、病害研究、代谢物质生化特征及生理进程鉴定方面的应用, 展望了该技术在植物研究领域的前沿性发展, 以期使MSI技术在植物研究中得到更好的应用。

View image in article
图1
多光谱成像技术应用方向变化趋势 UAS: 无人驾驶航空系统。节点表示多光谱技术的应用方向, 流量数据使用R语言统计, 分流表示应用方向的变化。
正文中引用本图/表的段落
早期MSI技术的应用方向主要是基于物质表面成像数据的简单分类与差异鉴别(Noordam et al., 2005; Lleó et al., 2009; Qin et al., 2011)。随着技术的不断成熟, 多光谱成像技术在植物学研究中衍生出不同的应用方向(图1)。在种子生物学研究中, MSI已被证明具有广泛用途: 根据MSI对研究样本采集到的数据结构和规律不同, 利用PLS-DA及LS-SVM等数据分析方法, 综合化学计量学和样品的形态特征, 实现了野生型和转基因大豆(Glycine max)及水稻(Oryza sativa)的精准区分(BPNN精确值98%) (Liu et al., 2014, 2016c); 运用LDA及SVM对多光谱成像数据进行分析, 从而实现部分豆科植物种子休眠生理状态的准确鉴定(准确性达90%) (Hu et al., 2020); 在植物性食品研究中, 基于不同物质特征吸收波长不同的原理, MSI技术已广泛应用于苹果(Malus pumila)、荔枝(Litchi chinensis)和大蒜(Allium sativum)等果实的品质评价以及可溶性固形物(soluble solids content, SSC)、花青素、总酚类物质和番茄红素等化合物的检测, 展示出良好的准确性和预测性(准确性达90%以上) (Liu et al., 2014, 2016a, 2016b; Li et al., 2016; Zhang et al., 2017)。近年来, MSI技术在植物损伤及生理状态研究中达到了一定的解析水平, 从面向单个像素的监督技术转向了区域间的差异分析, 即从“对点分析”转向“对面分析”(Blasco et al., 2007; Liu et al., 2015)。随着多光谱成像分辨率(现分辨率已达2 192×2 192像素以上)的不断提升及主成分分析和偏最小二乘法判别分析等数学手段在多光谱成像数据分析中的成功应用, MSI得以解决越来越复杂的问题, 并有望逐步成为满足植物研究中非接触、无损和活体成像需求的新手段。
MSI技术能够采集光谱信息数据和空间信息数据, 使得该技术可用于显示结构变化或特定化合物的积累及其对细胞功能的影响引起的局部变化(ElMasry et al., 2019a).有研究者将MSI技术和多种建模方式结合, 揭示了微生物对植物的侵染和植物损伤情况.Vrešak等(2016)以冬小麦(Triticum aestivum)和小黑麦(Secale cereale)种子为研究对象, 结合可见光谱(375-970 nm)和近红外光谱(900-1 600 nm), 成功区分了镰刀菌(Fusarium sp.)侵染和未侵染区域, 在侵染未产生肉眼可见损伤或肉眼难以分辨损伤时提早发现不健康的状况, 从而为种子健康诊断和品种鉴定提供新的思路.大豆作为主要的经济和油料作物, 容易受到大豆炭腐病(Macrophomina phaseolina)的影响, 研究者使用383-1 032 nm波长的光源, 用支持向量机(SVM)作分类器, 以97%的精确度成功实现了健康大豆和炭腐病染病大豆样品的二元分类(Nagasubramanian et al., 2018).近年来, 针对豌豆(Pisum sativum)收获后肉眼不可见的变色与漂白问题, 研究者采用MSI技术结合多元线性回归分析, 可清晰呈现种子损伤差异, 结果与分光光度计的检测结果高度匹配(判决系数(determination coefficients) R2=0.99) (Mcdonald et al., 2019), 为种子鉴定提供了可靠的识别工具.因此, MSI技术因其强大的数据采集和空间信息获取能力, 在植物损伤与病害检测方面应用前景广阔. ... Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution 1 2010 ... 在活体状态下揭示复杂植物器官或组织的生理状态, 一直是植物研究中极具挑战的问题.如何快速无损地进行植物结构、生理、生化和表型的定性定量分析及其特征分布检测, 成为近一个世纪以来研究者不断挑战的热点方向(Fernandez et al., 2010; Mansfield et al., 2012; Kim et al., 2020).采用染料进行组织显色反应, 或通过荧光标记检测组织材料的状态变化, 会受材料的组织特异性以及组织厚度的影响, 无法长时间进行活体观测.尤其是深入到器官或组织内部的标记本就困难, 加之受光漂白和不同组织结构的影响, 更难以真实反映植物本身的生化组成及生理状态.因此, 针对植物器官或组织的活体研究, 需要一种具有良好特异性和高灵敏的无标记成像技术.光谱成像技术将光谱和成像合二为一, 结合数学建模分析方法, 可实现定性定量分析植物结构、生理、生化表型并用于评估其特征分布(胡伟娟等, 2019), 近年来在植物组织活体检测中表现出强劲的应用潜力. ... Non-destructive identification of single hard seed via multispectral imaging analysis in six legume species 1 2020 ... 早期MSI技术的应用方向主要是基于物质表面成像数据的简单分类与差异鉴别(Noordam et al., 2005; Lleó et al., 2009; Qin et al., 2011).随着技术的不断成熟, 多光谱成像技术在植物学研究中衍生出不同的应用方向(图1).在种子生物学研究中, MSI已被证明具有广泛用途: 根据MSI对研究样本采集到的数据结构和规律不同, 利用PLS-DA及LS-SVM等数据分析方法, 综合化学计量学和样品的形态特征, 实现了野生型和转基因大豆(Glycine max)及水稻(Oryza sativa)的精准区分(BPNN精确值98%) (Liu et al., 2014, 2016c); 运用LDA及SVM对多光谱成像数据进行分析, 从而实现部分豆科植物种子休眠生理状态的准确鉴定(准确性达90%) (Hu et al., 2020); 在植物性食品研究中, 基于不同物质特征吸收波长不同的原理, MSI技术已广泛应用于苹果(Malus pumila)、荔枝(Litchi chinensis)和大蒜(Allium sativum)等果实的品质评价以及可溶性固形物(soluble solids content, SSC)、花青素、总酚类物质和番茄红素等化合物的检测, 展示出良好的准确性和预测性(准确性达90%以上) (Liu et al., 2014, 2016a, 2016b; Li et al., 2016; Zhang et al., 2017).近年来, MSI技术在植物损伤及生理状态研究中达到了一定的解析水平, 从面向单个像素的监督技术转向了区域间的差异分析, 即从“对点分析”转向“对面分析”(Blasco et al., 2007; Liu et al., 2015).随着多光谱成像分辨率(现分辨率已达2 192×2 192像素以上)的不断提升及主成分分析和偏最小二乘法判别分析等数学手段在多光谱成像数据分析中的成功应用, MSI得以解决越来越复杂的问题, 并有望逐步成为满足植物研究中非接触、无损和活体成像需求的新手段. ... Development of a multispectral imaging system for online quality assessment of pomegranate fruit 1 2017 ... Application of multispectral imaging in plant research
MSI技术能够采集光谱信息数据和空间信息数据, 使得该技术可用于显示结构变化或特定化合物的积累及其对细胞功能的影响引起的局部变化(ElMasry et al., 2019a).有研究者将MSI技术和多种建模方式结合, 揭示了微生物对植物的侵染和植物损伤情况.Vrešak等(2016)以冬小麦(Triticum aestivum)和小黑麦(Secale cereale)种子为研究对象, 结合可见光谱(375-970 nm)和近红外光谱(900-1 600 nm), 成功区分了镰刀菌(Fusarium sp.)侵染和未侵染区域, 在侵染未产生肉眼可见损伤或肉眼难以分辨损伤时提早发现不健康的状况, 从而为种子健康诊断和品种鉴定提供新的思路.大豆作为主要的经济和油料作物, 容易受到大豆炭腐病(Macrophomina phaseolina)的影响, 研究者使用383-1 032 nm波长的光源, 用支持向量机(SVM)作分类器, 以97%的精确度成功实现了健康大豆和炭腐病染病大豆样品的二元分类(Nagasubramanian et al., 2018).近年来, 针对豌豆(Pisum sativum)收获后肉眼不可见的变色与漂白问题, 研究者采用MSI技术结合多元线性回归分析, 可清晰呈现种子损伤差异, 结果与分光光度计的检测结果高度匹配(判决系数(determination coefficients) R2=0.99) (Mcdonald et al., 2019), 为种子鉴定提供了可靠的识别工具.因此, MSI技术因其强大的数据采集和空间信息获取能力, 在植物损伤与病害检测方面应用前景广阔. ... Application of long-wave near infrared hyperspectral imaging for measurement of soluble solid content (SSC) in pear 1 2016 ... 早期MSI技术的应用方向主要是基于物质表面成像数据的简单分类与差异鉴别(Noordam et al., 2005; Lleó et al., 2009; Qin et al., 2011).随着技术的不断成熟, 多光谱成像技术在植物学研究中衍生出不同的应用方向(图1).在种子生物学研究中, MSI已被证明具有广泛用途: 根据MSI对研究样本采集到的数据结构和规律不同, 利用PLS-DA及LS-SVM等数据分析方法, 综合化学计量学和样品的形态特征, 实现了野生型和转基因大豆(Glycine max)及水稻(Oryza sativa)的精准区分(BPNN精确值98%) (Liu et al., 2014, 2016c); 运用LDA及SVM对多光谱成像数据进行分析, 从而实现部分豆科植物种子休眠生理状态的准确鉴定(准确性达90%) (Hu et al., 2020); 在植物性食品研究中, 基于不同物质特征吸收波长不同的原理, MSI技术已广泛应用于苹果(Malus pumila)、荔枝(Litchi chinensis)和大蒜(Allium sativum)等果实的品质评价以及可溶性固形物(soluble solids content, SSC)、花青素、总酚类物质和番茄红素等化合物的检测, 展示出良好的准确性和预测性(准确性达90%以上) (Liu et al., 2014, 2016a, 2016b; Li et al., 2016; Zhang et al., 2017).近年来, MSI技术在植物损伤及生理状态研究中达到了一定的解析水平, 从面向单个像素的监督技术转向了区域间的差异分析, 即从“对点分析”转向“对面分析”(Blasco et al., 2007; Liu et al., 2015).随着多光谱成像分辨率(现分辨率已达2 192×2 192像素以上)的不断提升及主成分分析和偏最小二乘法判别分析等数学手段在多光谱成像数据分析中的成功应用, MSI得以解决越来越复杂的问题, 并有望逐步成为满足植物研究中非接触、无损和活体成像需求的新手段. ... Nonlinear fusion of multispectral citrus fruit image data with information contents 1 2017 ... Application of multispectral imaging in plant research
MSI技术能够采集光谱信息数据和空间信息数据, 使得该技术可用于显示结构变化或特定化合物的积累及其对细胞功能的影响引起的局部变化(ElMasry et al., 2019a).有研究者将MSI技术和多种建模方式结合, 揭示了微生物对植物的侵染和植物损伤情况.Vrešak等(2016)以冬小麦(Triticum aestivum)和小黑麦(Secale cereale)种子为研究对象, 结合可见光谱(375-970 nm)和近红外光谱(900-1 600 nm), 成功区分了镰刀菌(Fusarium sp.)侵染和未侵染区域, 在侵染未产生肉眼可见损伤或肉眼难以分辨损伤时提早发现不健康的状况, 从而为种子健康诊断和品种鉴定提供新的思路.大豆作为主要的经济和油料作物, 容易受到大豆炭腐病(Macrophomina phaseolina)的影响, 研究者使用383-1 032 nm波长的光源, 用支持向量机(SVM)作分类器, 以97%的精确度成功实现了健康大豆和炭腐病染病大豆样品的二元分类(Nagasubramanian et al., 2018).近年来, 针对豌豆(Pisum sativum)收获后肉眼不可见的变色与漂白问题, 研究者采用MSI技术结合多元线性回归分析, 可清晰呈现种子损伤差异, 结果与分光光度计的检测结果高度匹配(判决系数(determination coefficients) R2=0.99) (Mcdonald et al., 2019), 为种子鉴定提供了可靠的识别工具.因此, MSI技术因其强大的数据采集和空间信息获取能力, 在植物损伤与病害检测方面应用前景广阔. ... Non-destructive discrimination of conventional and glyphosate-resistant soybean seeds and their hybrid descendants using multispectral imaging and chemometric methods 1 2016 ... 早期MSI技术的应用方向主要是基于物质表面成像数据的简单分类与差异鉴别(Noordam et al., 2005; Lleó et al., 2009; Qin et al., 2011).随着技术的不断成熟, 多光谱成像技术在植物学研究中衍生出不同的应用方向(图1).在种子生物学研究中, MSI已被证明具有广泛用途: 根据MSI对研究样本采集到的数据结构和规律不同, 利用PLS-DA及LS-SVM等数据分析方法, 综合化学计量学和样品的形态特征, 实现了野生型和转基因大豆(Glycine max)及水稻(Oryza sativa)的精准区分(BPNN精确值98%) (Liu et al., 2014, 2016c); 运用LDA及SVM对多光谱成像数据进行分析, 从而实现部分豆科植物种子休眠生理状态的准确鉴定(准确性达90%) (Hu et al., 2020); 在植物性食品研究中, 基于不同物质特征吸收波长不同的原理, MSI技术已广泛应用于苹果(Malus pumila)、荔枝(Litchi chinensis)和大蒜(Allium sativum)等果实的品质评价以及可溶性固形物(soluble solids content, SSC)、花青素、总酚类物质和番茄红素等化合物的检测, 展示出良好的准确性和预测性(准确性达90%以上) (Liu et al., 2014, 2016a, 2016b; Li et al., 2016; Zhang et al., 2017).近年来, MSI技术在植物损伤及生理状态研究中达到了一定的解析水平, 从面向单个像素的监督技术转向了区域间的差异分析, 即从“对点分析”转向“对面分析”(Blasco et al., 2007; Liu et al., 2015).随着多光谱成像分辨率(现分辨率已达2 192×2 192像素以上)的不断提升及主成分分析和偏最小二乘法判别分析等数学手段在多光谱成像数据分析中的成功应用, MSI得以解决越来越复杂的问题, 并有望逐步成为满足植物研究中非接触、无损和活体成像需求的新手段. ... Feasibility in multispectral imaging for predicting the content of bioactive compounds in intact tomato fruit 2 2015 ... 早期MSI技术的应用方向主要是基于物质表面成像数据的简单分类与差异鉴别(Noordam et al., 2005; Lleó et al., 2009; Qin et al., 2011).随着技术的不断成熟, 多光谱成像技术在植物学研究中衍生出不同的应用方向(图1).在种子生物学研究中, MSI已被证明具有广泛用途: 根据MSI对研究样本采集到的数据结构和规律不同, 利用PLS-DA及LS-SVM等数据分析方法, 综合化学计量学和样品的形态特征, 实现了野生型和转基因大豆(Glycine max)及水稻(Oryza sativa)的精准区分(BPNN精确值98%) (Liu et al., 2014, 2016c); 运用LDA及SVM对多光谱成像数据进行分析, 从而实现部分豆科植物种子休眠生理状态的准确鉴定(准确性达90%) (Hu et al., 2020); 在植物性食品研究中, 基于不同物质特征吸收波长不同的原理, MSI技术已广泛应用于苹果(Malus pumila)、荔枝(Litchi chinensis)和大蒜(Allium sativum)等果实的品质评价以及可溶性固形物(soluble solids content, SSC)、花青素、总酚类物质和番茄红素等化合物的检测, 展示出良好的准确性和预测性(准确性达90%以上) (Liu et al., 2014, 2016a, 2016b; Li et al., 2016; Zhang et al., 2017).近年来, MSI技术在植物损伤及生理状态研究中达到了一定的解析水平, 从面向单个像素的监督技术转向了区域间的差异分析, 即从“对点分析”转向“对面分析”(Blasco et al., 2007; Liu et al., 2015).随着多光谱成像分辨率(现分辨率已达2 192×2 192像素以上)的不断提升及主成分分析和偏最小二乘法判别分析等数学手段在多光谱成像数据分析中的成功应用, MSI得以解决越来越复杂的问题, 并有望逐步成为满足植物研究中非接触、无损和活体成像需求的新手段. ...
MSI技术能够采集光谱信息数据和空间信息数据, 使得该技术可用于显示结构变化或特定化合物的积累及其对细胞功能的影响引起的局部变化(ElMasry et al., 2019a).有研究者将MSI技术和多种建模方式结合, 揭示了微生物对植物的侵染和植物损伤情况.Vrešak等(2016)以冬小麦(Triticum aestivum)和小黑麦(Secale cereale)种子为研究对象, 结合可见光谱(375-970 nm)和近红外光谱(900-1 600 nm), 成功区分了镰刀菌(Fusarium sp.)侵染和未侵染区域, 在侵染未产生肉眼可见损伤或肉眼难以分辨损伤时提早发现不健康的状况, 从而为种子健康诊断和品种鉴定提供新的思路.大豆作为主要的经济和油料作物, 容易受到大豆炭腐病(Macrophomina phaseolina)的影响, 研究者使用383-1 032 nm波长的光源, 用支持向量机(SVM)作分类器, 以97%的精确度成功实现了健康大豆和炭腐病染病大豆样品的二元分类(Nagasubramanian et al., 2018).近年来, 针对豌豆(Pisum sativum)收获后肉眼不可见的变色与漂白问题, 研究者采用MSI技术结合多元线性回归分析, 可清晰呈现种子损伤差异, 结果与分光光度计的检测结果高度匹配(判决系数(determination coefficients) R2=0.99) (Mcdonald et al., 2019), 为种子鉴定提供了可靠的识别工具.因此, MSI技术因其强大的数据采集和空间信息获取能力, 在植物损伤与病害检测方面应用前景广阔. ... A non-invasive analysis of seed vigor by infrared thermography 1 2020 ... 光谱成像技术包括可见光成像(red, green, blue imaging and RGB imaging)、高光谱成像(hyperspectral imaging, HSI)、多光谱成像(multispectral imaging, MSI)以及热红外成像(infrared thermal imaging, ITI) (彭羽等, 2020; Liu et al., 2020b; Bodner et al., 2021).其中, RGB成像常用于分析宏观表型变化.由于该技术色彩通道较少, 仅包含二维空间信息, 在对受胁迫时间较短和未出现性状变化的植物进行检测时, 针对不产生颜色变化或胁迫受害部位颜色与植物组织色差较小时, 难以采集到色彩差异信息, 因此难以检测出植物早期胁迫, 存在一定的应用局限(Blasco et al., 2007). ... Multispectral images of peach related to firmness and maturity at harvest 1 2009 ... 早期MSI技术的应用方向主要是基于物质表面成像数据的简单分类与差异鉴别(Noordam et al., 2005; Lleó et al., 2009; Qin et al., 2011).随着技术的不断成熟, 多光谱成像技术在植物学研究中衍生出不同的应用方向(图1).在种子生物学研究中, MSI已被证明具有广泛用途: 根据MSI对研究样本采集到的数据结构和规律不同, 利用PLS-DA及LS-SVM等数据分析方法, 综合化学计量学和样品的形态特征, 实现了野生型和转基因大豆(Glycine max)及水稻(Oryza sativa)的精准区分(BPNN精确值98%) (Liu et al., 2014, 2016c); 运用LDA及SVM对多光谱成像数据进行分析, 从而实现部分豆科植物种子休眠生理状态的准确鉴定(准确性达90%) (Hu et al., 2020); 在植物性食品研究中, 基于不同物质特征吸收波长不同的原理, MSI技术已广泛应用于苹果(Malus pumila)、荔枝(Litchi chinensis)和大蒜(Allium sativum)等果实的品质评价以及可溶性固形物(soluble solids content, SSC)、花青素、总酚类物质和番茄红素等化合物的检测, 展示出良好的准确性和预测性(准确性达90%以上) (Liu et al., 2014, 2016a, 2016b; Li et al., 2016; Zhang et al., 2017).近年来, MSI技术在植物损伤及生理状态研究中达到了一定的解析水平, 从面向单个像素的监督技术转向了区域间的差异分析, 即从“对点分析”转向“对面分析”(Blasco et al., 2007; Liu et al., 2015).随着多光谱成像分辨率(现分辨率已达2 192×2 192像素以上)的不断提升及主成分分析和偏最小二乘法判别分析等数学手段在多光谱成像数据分析中的成功应用, MSI得以解决越来越复杂的问题, 并有望逐步成为满足植物研究中非接触、无损和活体成像需求的新手段. ... Detection of surface and subsurface defects of apples using structured-illumination reflectance imaging with machine learning algorithms 1 2018 ... Application of multispectral imaging in plant research
MSI技术能够采集光谱信息数据和空间信息数据, 使得该技术可用于显示结构变化或特定化合物的积累及其对细胞功能的影响引起的局部变化(ElMasry et al., 2019a).有研究者将MSI技术和多种建模方式结合, 揭示了微生物对植物的侵染和植物损伤情况.Vrešak等(2016)以冬小麦(Triticum aestivum)和小黑麦(Secale cereale)种子为研究对象, 结合可见光谱(375-970 nm)和近红外光谱(900-1 600 nm), 成功区分了镰刀菌(Fusarium sp.)侵染和未侵染区域, 在侵染未产生肉眼可见损伤或肉眼难以分辨损伤时提早发现不健康的状况, 从而为种子健康诊断和品种鉴定提供新的思路.大豆作为主要的经济和油料作物, 容易受到大豆炭腐病(Macrophomina phaseolina)的影响, 研究者使用383-1 032 nm波长的光源, 用支持向量机(SVM)作分类器, 以97%的精确度成功实现了健康大豆和炭腐病染病大豆样品的二元分类(Nagasubramanian et al., 2018).近年来, 针对豌豆(Pisum sativum)收获后肉眼不可见的变色与漂白问题, 研究者采用MSI技术结合多元线性回归分析, 可清晰呈现种子损伤差异, 结果与分光光度计的检测结果高度匹配(判决系数(determination coefficients) R2=0.99) (Mcdonald et al., 2019), 为种子鉴定提供了可靠的识别工具.因此, MSI技术因其强大的数据采集和空间信息获取能力, 在植物损伤与病害检测方面应用前景广阔. ... Application of near-infrared hyperspectral imaging with variable selection methods to determine and visualize caffeine content of coffee beans 1 2017 ... 早期MSI技术的应用方向主要是基于物质表面成像数据的简单分类与差异鉴别(Noordam et al., 2005; Lleó et al., 2009; Qin et al., 2011).随着技术的不断成熟, 多光谱成像技术在植物学研究中衍生出不同的应用方向(图1).在种子生物学研究中, MSI已被证明具有广泛用途: 根据MSI对研究样本采集到的数据结构和规律不同, 利用PLS-DA及LS-SVM等数据分析方法, 综合化学计量学和样品的形态特征, 实现了野生型和转基因大豆(Glycine max)及水稻(Oryza sativa)的精准区分(BPNN精确值98%) (Liu et al., 2014, 2016c); 运用LDA及SVM对多光谱成像数据进行分析, 从而实现部分豆科植物种子休眠生理状态的准确鉴定(准确性达90%) (Hu et al., 2020); 在植物性食品研究中, 基于不同物质特征吸收波长不同的原理, MSI技术已广泛应用于苹果(Malus pumila)、荔枝(Litchi chinensis)和大蒜(Allium sativum)等果实的品质评价以及可溶性固形物(soluble solids content, SSC)、花青素、总酚类物质和番茄红素等化合物的检测, 展示出良好的准确性和预测性(准确性达90%以上) (Liu et al., 2014, 2016a, 2016b; Li et al., 2016; Zhang et al., 2017).近年来, MSI技术在植物损伤及生理状态研究中达到了一定的解析水平, 从面向单个像素的监督技术转向了区域间的差异分析, 即从“对点分析”转向“对面分析”(Blasco et al., 2007; Liu et al., 2015).随着多光谱成像分辨率(现分辨率已达2 192×2 192像素以上)的不断提升及主成分分析和偏最小二乘法判别分析等数学手段在多光谱成像数据分析中的成功应用, MSI得以解决越来越复杂的问题, 并有望逐步成为满足植物研究中非接触、无损和活体成像需求的新手段. ...
本文的其它图/表
|