专题论坛

淫羊藿类黄酮生物合成相关基因研究进展

  • 范雪兰 ,
  • 落艳娇 ,
  • 徐超群 ,
  • 郭宝林
展开
  • 1中国医学科学院北京协和医学院药用植物研究所, 中草药物质基础与资源利用教育部重点实验室, 北京 100193
    2江西中医药大学, 南昌 330000
    3中国中医科学院中医药健康产业研究所, 南昌 330000
第一联系人: 共同第一作者
*徐超群, 中国医学科学院药用植物研究所助理研究员。主要研究方向为淫羊藿苷类成分的合成调控和高含量品种定向培育。参与国家自然科学基金等多个项目。主持重庆中药研究院开放课题及企业合作横向课题3项, 参与中国医学科学院创新工程以及四川省区域创新合作等项目。以第一作者在Frontiers in Plant Science和Giga Science等杂志发表论文10篇。E-mail: cqunxu@implad.ac.cn;
郭宝林, 研究员, 博士生导师, 中国医学科学院药用植物研究所药用植物鉴定中心副主任; 国家新药评审中心中药资源咨询专家, 中国植物学会药用植物和植物药专业委员会委员。承担国内外科研项目30余项; 发表论文290余篇, 主持编撰《中华医学百科全书·药用植物学》等著作11部; 培育药用植物新品种5个。目前其研究团队结合生产需求, 在药用植物分类鉴定、生理生态、遗传育种等基础上, 进行资源评估、新品种培育、大田栽培等技术研发、服务、评估和咨询; 并基于前沿多组学技术解析植物次生代谢途径, 揭示植物次生代谢的空间分布规律, 发掘和优化次生代谢相关元件, 通过代谢工程或合成生物学技术实现天然药物的绿色高效合成。E-mail: blguo@implad.ac.cn

收稿日期: 2023-09-22

  录用日期: 2024-03-18

  网络出版日期: 2024-04-02

基金资助

中国医学科学院医学与健康科技创新工程(2021-I2M-1-031)

Research Progress on Genes Related to Flavonoids Biosynthesis in Herba Epimedii

  • Fan Xuelan ,
  • Luo Yanjiao ,
  • Xu Chaoqun ,
  • Guo Baolin
Expand
  • 1Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Institute of Medicinal Plant Development, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100193, China
    2Jiangxi University of Chinese Medicine, Nanchang 330000, China
    3Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330000, China
First author contact: These authors contributed equally to this paper

Received date: 2023-09-22

  Accepted date: 2024-03-18

  Online published: 2024-04-02

摘要

淫羊藿(Herba Epimedii)是一种历史悠久的中草药(TCM), 药用价值高, 国内淫羊藿相关研究备受关注。黄酮醇苷类(PFGs)成分是淫羊藿的主要活性物质, 其含量决定了药用品质。了解淫羊藿类黄酮生物合成途径, 挖掘与淫羊藿黄酮醇苷类含量相关的基因, 阐明其生物合成途径的调控机制对于提高淫羊藿品质至关重要。该文系统综述了淫羊藿类黄酮生物合成相关结构基因和转录因子基因研究进展, 为揭示黄酮含量的分子调控机制, 进而为淫羊藿分子育种和黄酮醇苷的合成生物学研究奠定理论基础。

本文引用格式

范雪兰 , 落艳娇 , 徐超群 , 郭宝林 . 淫羊藿类黄酮生物合成相关基因研究进展[J]. 植物学报, 2024 , 59(5) : 834 -846 . DOI: 10.11983/CBB23133

Abstract

Herba Epimedii is a traditional Chinese herb medicine (TCM) with a long history. Research on Herba Epimedii has attracted much attention in China due to its high medicinal value. C8-prenylated flavonol glycosides (PFGs) have been demonstrated to be the main bioactive components in Epimedium brevicornu, and their content determines the medicinal quality. Understanding the biosynthesis pathway of PFGs, exploring genes related to PFGs content, and elucidating the regulatory mechanisms of PFGs biosynthesis pathway is fundamental and essential for improving the quality of E. brevicornu. Here, we provide a comprehensive review of the research on structural and transcriptional factor genes related to the biosynthesis of PFGs, which not only contributes to unravel the regulatory mechanisms related to PFGs content, but also lay a foundation for research on molecular breeding and the synthetic biology in Epimedium plants.

参考文献

[1] Chen S, Wang XJ, Cheng Y, Gao HS, Chen XH (2023). A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules 28, 4982.
[2] Levisson M, Beekwilder J, Vincken JP (2020). Plant aromatic prenyltransferases: tools for microbial cell factories. Trends Biotechnol 38, 917-934.
[3] Dong XW, Fan YJ, Yu LJ, Hu YZ (2007). Synthesis of four natural prenylflavonoids and their estrogen-like activities. Arch Pharm 340, 372-376.
[4] Feng KP, Chen RD, Xie KB, Chen DW, Guo BL, Liu X, Liu JM, Zhang M, Dai JG (2018). A regiospecific rhamnosyltransferase from Epimedium pseudowushanense catalyzes the 3-O-rhamnosylation of prenylflavonols. Org Biomol Chem 16, 452-458.
[5] Feng KP, Chen RD, Xie KB, Chen DW, Liu JM, Du WY, Yang L, Dai JG (2019). Ep7GT, a glycosyltransferase with sugar donor flexibility from Epimedium pseudowushanense, catalyzes the 7-O-glycosylation of baohuoside. Org Biomol Chem 17, 8106-8114.
[6] Gani I, Jameel S, Bhat SA, Amin H, Bhat KA (2023). Prenylated flavonoids of genus Epimedium: phytochemistry, estimation and synthesis. Chemistry Select 8, e202204263.
[7] Hu DG, Sun CH, Zhang QY, An JP, You CX, Hao YJ (2016). Glucose sensor MdHXK1 phosphorylates and stabilizes MdbHLH3 to promote anthocyanin biosynthesis in apple. PLoS Genet 12, e1006273.
[8] Huang WJ, Khaldun ABM, Chen JJ, Zhang CJ, Lv HY, Yuan L, Wang Y (2016a). A R2R3-MYB transcription factor regulates the flavonol biosynthetic pathway in a traditional Chinese medicinal plant, Epimedium sagittatum. Front Plant Sci 7, 1089.
[9] Huang WJ, Khaldun ABM, Lv HY, Du LW, Zhang CJ, Wang Y (2016b). Isolation and functional characterization of a R2R3-MYB regulator of the anthocyanin biosynthetic pathway from Epimedium sagittatum. Plant Cell Rep 35, 883-894.
[10] Huang WJ, Lv HY, Wang Y (2017). Functional characterization of a novel R2R3-MYB transcription factor modulating the flavonoid biosynthetic pathway from Epimedium sagittatum. Front Plant Sci 8, 1274.
[11] Huang WJ, Sun W, Lv HY, Luo M, Zeng SH, Pattanaik S, Yuan L, Wang Y (2013a). A R2R3-MYB transcription factor from Epimedium sagittatum regulates the flavonoid biosynthetic pathway. PLoS One 8, e70778.
[12] Huang WJ, Sun W, Lv HY, Xiao G, Zeng SH, Wang Y (2013b). Isolation and molecular characterization of thirteen R2R3-MYB transcription factors from Epimedium sagittatum. Int J Mol Sci 14, 594-610.
[13] Huang WJ, Sun W, Wang Y (2012). Isolation and molecular characterisation of flavonoid 3′-hydroxylase and flavonoid 3′,5′-hydroxylase genes from a traditional Chinese medicinal plant, Epimedium sagittatum. Gene 497, 125-130.
[14] Huang WJ, Zeng SH, Xiao G, Wei GY, Liao SH, Chen JJ, Sun W, Lv HY, Wang Y (2015). Elucidating the biosynthetic and regulatory mechanisms of flavonoid-derived bioactive components in Epimedium sagittatum. Front Plant Sci 6, 689.
[15] Jiang J, Song J, Jia XB (2015). Phytochemistry and ethnopharmacology of Epimedium L. species. Chin Herb Med 7, 204-222.
[16] Jiang YH, Liu CH, Yan D, Wen XH, Liu YL, Wang HJ, Dai JY, Zhang YJ, Liu YF, Zhou B, Ren XL (2017). MdHB1 down-regulation activates anthocyanin biosynthesis in the white-fleshed apple cultivar ‘Granny Smith’. J Exp Bot 68, 1055-1069.
[17] Kawai Y, Ono E, Mizutani M (2014). Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J 78, 328-343.
[18] Kawamura T, Hayashi M, Mukai R, Terao J, Nemoto H (2012). An efficient method for C8-prenylation of flavonols and flavanones. Synthesis 44, 1308-1314.
[19] Kim DH, Jung HA, Sohn HS, Kim JW, Choi JS (2017). Potential of icariin metabolites from Epimedium koreanum Nakai as antidiabetic therapeutic agents. Molecules 22, 986.
[20] Li C, Wu J, Hu KD, Wei SW, Sun HY, Hu LY, Han Z, Yao GF, Zhang H (2020). PyWRKY26 and PybHLH3 cotargeted the PyMYB114 promoter to regulate anthocyanin biosynthesis and transport in red-skinned pears. Hortic Res 7, 37.
[21] Lin CC, Chen DW, Dai JG (2022). Advances of synthetic biology of flavonoids. Acta Pharm Sin 57, 1322-1335. (in Chinese)
  林春草, 陈大伟, 戴均贵 (2022). 黄酮类化合物合成生物学研究进展. 药学学报 57, 1322-1335.
[22] Liu JY, Osbourn A, Ma PD (2015). MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol Plant 8, 689-708.
[23] Liu SA, Wang L, Cao M, Pang SY, Li WX, Kato-Noguchi H, Jin B, Wang L (2020). Identification and characterization of long non-coding RNAs regulating flavonoid biosynthesis in Ginkgo biloba leaves. Ind Crops Prod 158, 112980.
[24] Liu WX, Feng Y, Yu SH, Fan ZQ, Li XL, Li JY, Yin HF (2021a). The flavonoid biosynthesis network in plants. Int J Mol Sci 22, 12824.
[25] Liu YT, Wu LR, Deng ZX, Yu Y (2021b). Two putative parallel pathways for naringenin biosynthesis in Epimedium wushanense. RSC Adv 11, 13919-13927.
[26] Lu SW, Zhuge YX, Hao TY, Liu ZJ, Zhang MW, Fang JG (2022). Systematic analysis reveals O-methyltransferase gene family members involved in flavonoid biosynthesis in grape. Plant Physiol Biochem 173, 33-45.
[27] Lyu YB, Liu SK, Gao S, Zhou JW (2020). Identification and characterization of three flavonoid 3-O-glycosyltransferases from Epimedium koreanum Nakai. Biochem Eng J 163, 107759.
[28] Ma HP, He XR, Yang Y, Li MX, Hao DJ, Jia ZP (2011). The genus Epimedium: an ethnopharmacological and phytochemical review. J Ethnopharmacol 134, 519-541.
[29] Mi YL, He RK, Wan HH, Meng XX, Liu D, Huang WJ, Zhang YJ, Yousaf Z, Huang HW, Chen SL, Wang Y, Sun W (2023). Genetic and molecular analysis of the anthocyanin pigmentation pathway in Epimedium. Front Plant Sci 14, 1133616.
[30] Moummou H, Kallberg Y, Tonfack LB, Persson B, van der Rest B (2012). The plant short-chain dehydrogenase (SDR) superfamily: genome-wide inventory and diversification patterns. BMC Plant Biol 12, 219.
[31] Pan JQ (2017). The Effects and Molecular Mechanism of Light on the Physiological Characteristics and Flavonoid Synthesis in Epimedium pseudowushanense B. L.Guo. PhD dissertation. Beijing: Peking Union Medical College. pp. 1-164. (in Chinese)
  潘俊倩 (2017). 光影响拟巫山淫羊藿生理特性以及黄酮类化合物合成的分子机制初步研究. 博士论文. 北京: 北京协和医学院. pp. 1-164.
[32] Pan JQ, Chen HM, Guo BL, Liu C (2017). Understanding the molecular mechanisms underlying the effects of light intensity on flavonoid production by RNA-seq analysis in Epimedium pseudowushanense B.L.Guo. PLoS One 12, e0182348.
[33] Qin WH, Yang Y, Wang YH, Zhang XM, Liu X (2022). Transcriptomic and metabolomic analysis reveals the difference between large and small flower taxa of Herba Epimedii during flavonoid accumulation. Sci Rep 12, 2762.
[34] Ren L, Dai SL, Wang Y (2008). The germplasm resources of Epimedium in China and its application in landscape architecture. J Wuhan Bot Res 26, 644-649. (in Chinese)
  任璘, 戴思兰, 王瑛 (2008). 淫羊藿属植物种质资源及其园林应用. 武汉植物学研究 26, 644-649.
[35] Schijlen EGWM, de Vos CHR, Martens S, Jonker HH, Rosin FM, Molthoff JW, Tikunov YM, Angenent GC, van Tunen AJ, Bovy AG (2007). RNA interference silencing of chalcone synthase, the first step in the flavonoid biosynthesis pathway, leads to parthenocarpic tomato fruits. Plant Physiol 144, 1520-1530.
[36] Shen GA, Luo YJ, Yao Y, Meng GQ, Zhang YX, Wang YY, Xu CQ, Liu X, Zhang C, Ding G, Pang YZ, Zhang H, Guo BL (2022a). The discovery of a key prenyltransferase gene assisted by a chromosome-level Epimedium pubescens genome. Front Plant Sci 13, 1034943.
[37] Shen N, Wang TF, Gan Q, Liu SA, Wang L, Jin B (2022b). Plant flavonoids: classification, distribution, biosynthesis, and antioxidant activity. Food Chem 383, 132531.
[38] Stracke R, Favory JJ, Gruber H, Bartelniewoehner L, Bartels S, Binkert M, Funk M, Weisshaar B, Ulm R (2010). The Arabidopsis bZIP transcription factor HY5 regulates expression of the PFG1/MYB12 gene in response to light and ultraviolet-B radiation. Plant Cell Environ 33, 88-103.
[39] Turnbull JJ, Sobey WJ, Aplin RT, Hassan A, Firmin JL, Schofield CJ, Prescott AG (2000). Are anthocyanidins the immediate products of anthocyanidin synthase? Chem Commun (24), 2473-2474.
[40] Vogt T, Jones P (2000). Glycosyltransferases in plant natural product synthesis: characterization of a supergene family. Trends Plant Sci 5, 380-386.
[41] Wang J, Chu SS, Zhu Y, Cheng H, Yu DY (2015). Positive selection drives neofunctionalization of the UbiA prenyltransferase gene family. Plant Mol Biol 87, 383-394.
[42] Wang PP, Li CJ, Li XD, Huang WJ, Wang Y, Wang JL, Zhang YJ, Yang XM, Yan X, Wang Y, Zhou ZH (2021). Complete biosynthesis of the potential medicine icaritin by engineered Saccharomyces cerevisiae and Escherichia coli. Sci Bull 66, 1906-1916.
[43] Wilson AE, Tian L (2019). Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism. Plant J 100, 1273-1288.
[44] Xu CQ, Liu X, Shen GA, Fan XL, Zhang Y, Sun C, Suo FM, Guo BL (2023). Time-series transcriptome provides insights into the gene regulation network involved in the icariin-flavonoid metabolism during the leaf development of Epimedium pubescens. Front Plant Sci 14, 1183481.
[45] Xu WJ, Dubos C, Lepiniec L (2015). Transcriptional control of flavonoid biosynthesis by MYB-bHLH-WDR complexes. Trends Plant Sci 20, 176-185.
[46] Yang XM, Chen JJ, Huang WJ, Zhang YJ, Yan X, Zhou ZH, Wang Y (2020). Synthesis of icariin in tobacco leaf by overexpression of a glucosyltransferase gene from Epimedium sagittatum. Ind Crops Prod 156, 112841.
[47] Yao Y (2023). Cloning and Characterization of UDP-glycosyltransferases UGT 79 Family of Epimedium pubescens. PhD dissertation. Beijing: Peking Union Medical Col- lege. pp. 1-126. (in Chinese)
  姚宇 (2023). 柔毛淫羊藿糖基转移酶UGT79家族基因的克隆及功能研究. 博士论文. 北京: 北京协和医学院. pp. 1- 126.
[48] Yao Y, Gu JJ, Luo YJ, Wang YY, Pang YZ, Shen GA, Guo BL (2022a). Genome-wide analysis of UGT gene family identified key gene for the biosynthesis of bioactive flavonol glycosides in Epimedium pubescens Maxim. Synth Syst Biotechnol 7, 1095-1107.
[49] Yao Y, Gu JJ, Luo YJ, Zhang YX, Wang YY, Pang YZ, Jia SG, Xu CQ, Li DD, Suo FM, Shen GA, Guo BL (2022b). A novel 3-O-rhamnoside: 2′′-O-xylosyltransferase responsible for terminal modification of prenylflavonol glycosides in Epimedium pubescens Maxim. Int J Mol Sci 23, 16050.
[50] Yoshitama K (1984). Anthocyanins and their distribution in the genus Epimedium. Bot Mag Tokyo 97, 429-435.
[51] Yu Y, Cao YL, Liu YT (2022). Glycosyltransferase and its coding gene for the synthesis of Epimedin and its applications. Chinese patent, ZL202111673688.6. 2021-12-31. (in Chinese)
  虞沂, 曹应龙, 刘亚婷 (2022). 朝藿定合成用糖苷糖基转移酶及其编码基因和应用. 中国专利, ZL202111673688.6. 2021-12-31.
[52] Zeng SH, Liu YL, Hu WM, Liu YL, Shen XF, Wang Y (2013a). Integrated transcriptional and phytochemical analyses of the flavonoid biosynthesis pathway in Epimedium. Plant Cell Tissue Organ Cult 115, 355-365.
[53] Zeng SH, Liu YL, Zou CY, Huang WJ, Wang Y (2013b). Cloning and characterization of phenylalanine ammonia- lyase in medicinal Epimedium species. Plant Cell Tissue Organ Cult 113, 257-267.
[54] Zhang DW, Cheng Y, Wang NL, Zhang JC, Yang MS, Yao XS (2008). Effects of total flavonoids and flavonol glycosides from Epimedium koreanum Nakai on the proliferation and differentiation of primary osteoblasts. Phytome- dicine 15, 55-61.
[55] Zhang HR, Du C, Wang Y, Wang J, Zheng LL, Wang YC (2016). The Reaumuria trigyna leucoanthocyanidin dioxygenase (RtLDOX) gene complements anthocyanidin synthesis and increases the salt tolerance potential of a transgenic Arabidopsis LDOX mutant. Plant Physiol Biochem 106, 278-287.
[56] Zhang YX, Zhang C, Li ZH, Zeng C, Xue Z, Li EW, Li G, Li J, Shen GA, Xu CQ, Wang YY, Ma BP, Zhang H, Guo BL (2022). New 8-prenylated quercetin glycosides from the flowers of Epimedium acuminatum and their testosterone production-promoting activities. Front Chem 10, 1014110.
[57] Zhao H, Guo YM, Li S, Han RQ, Ying JM, Zhu H, Wang YY, Yin L, Han YQ, Sun LZ, Wang ZY, Lin QC, Bi XY, Jiao YC, Jia HY, Zhao JJ, Huang Z, Li ZY, Zhou JG, Song W, Meng K, Cai JQ (2015). A novel anti-cancer agent Icaritin suppresses hepatocellular carcinoma initiation and malignant growth through the IL-6/Jak2/Stat3 pathway. Oncotarget 6, 31927-31943.
[58] Zhao JY, Ohba S, Shinkai M, Chung UI, Nagamune T (2008). Icariin induces osteogenic differentiation in vitro in a BMP- and Runx2-dependent manner. Biochem Biophys Res Commun 369, 444-448.
[59] Zhou JW, Gao S, Chen J, Zeng WZ, Yu SQ (2023a). A flavonoid 4′-O-methyltransferase derived from Epimedium koreanum and its application. Chinese patent, CN202111098372.9. 2021-09-18. (in Chinese)
  周景文, 高松, 陈坚, 曾伟主, 余世琴 (2023a). 一种来源于朝鲜淫羊藿的黄酮4′-O-甲基转移酶及其应用. 中国专利, CN202111098372.9. 2021-09-18.
[60] Zhou JW, Yu SQ, Chen J, Zeng WZ, Gao S (2023b). A flavonoid 8-isoprenyl transferase derived from Epimedium koreanum Nakai and its application. Chinese patent, CN2021- 11098375. 2. 2021-09-18. (in Chinese)
  周景文, 余世琴, 陈坚, 曾伟主, 高松 (2023b). 一种朝鲜淫羊藿来源的黄酮8-异戊烯基转移酶及其应用. 中国专利, CN202111098375.2. 2021-09-18.
[61] Zhu JF, Li ZJ, Zhang GS, Meng K, Kuang WY, Li J, Zhou XF, Li RJ, Peng HL, Dai CW, Shen JK, Gong FJ, Xu YX, Liu SF (2011). Icaritin shows potent anti-leukemia activity on chronic myeloid leukemia in vitro and in vivo by regulating MAPK/ERK/JNK and JAK2/STAT3/AKT signalings. PLoS One 6, e23720.
文章导航

/