专题论坛

木本植物叶色变异机制研究进展

  • 车佳航 ,
  • 李纬楠 ,
  • 秦英之 ,
  • 陈金焕
展开
  • 1北京林业大学生物科学与技术学院, 北京 100083
    2北京林业大学林木育种与生态修复国家工程中心, 北京 100083
    3北京林业大学林木资源高效生产全国重点实验室, 北京 100083
* 陈金焕, 北京林业大学林木遗传育种学科教授、博士生导师, 原子能农学会理事, 中国林学会灌木分会常务委员。先后主持国家自然科学基金项目、宁夏重点研发项目、宁夏揭榜挂帅子课题等省部级项目。主要从事枸杞、红叶杨等经济林育种及经济性状相关分子机制研究, 围绕枸杞等特色经济林树种, 通过染色体组操作技术进行种质创新, 利用基因编辑等技术实现精准分子设计育种。在Journal of Experimental Botany、Horticulture Research、Tree Physiology及中国科学等学术期刊发表论文34篇, 授权国家发明专利4项, 获宁夏回族自治区科学技术进步一等奖1项。E-mail: chenjh@bjfu.edu.cn

收稿日期: 2023-02-11

  录用日期: 2024-01-30

  网络出版日期: 2024-02-04

基金资助

宁夏重点研发计划(2022BBF01001-02);国家自然基金项目(31670610)

Research Progress of Leaf Color Variation Mechanism in Woody Plants

  • Jiahang Che ,
  • Weinan Li ,
  • Yingzhi Qin ,
  • Jinhuan Chen
Expand
  • 1College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
    2National Engineering Center for Forest Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
    3State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China

Received date: 2023-02-11

  Accepted date: 2024-01-30

  Online published: 2024-02-04

摘要

木本彩叶植物叶色鲜艳, 具有极高的观赏价值, 能为园林景观增添色彩。近年来, 园林景观设计越来越重视木本彩叶植物的应用。引起叶色变化的直接原因是叶片中的色素含量与比例改变。叶色变异受内部遗传因素和外界环境因素共同影响, 通过控制光照和温度等条件可对叶色进行调控。随着对木本植物叶色变异机制研究的探索, 目前在木本植物中已挖掘出多个调控叶色变异的关键基因和调控模式。该文从环境因素、叶片微观结构、叶色变异的分子机制等方面总结木本彩叶植物叶色变异的研究进展, 为进一步完善木本植物叶色变异机制及培育观赏彩叶树种提供参考。

本文引用格式

车佳航 , 李纬楠 , 秦英之 , 陈金焕 . 木本植物叶色变异机制研究进展[J]. 植物学报, 2024 , 59(2) : 319 -328 . DOI: 10.11983/CBB23019

Abstract

Colorful woody plants have bright foliage, high ornamental value, and are valuable to the garden landscape. In recent years, more and more attention has been paid to the configuration of colored woody plants in landscape design. The most direct cause of leaf color change is the alteration in pigment content and ratio in the leaves. Leaf color variation is influenced by both genetic and environmental factors. Leaf color can be regulated through controlling light, temperature and other factors. With the development of molecular biology, several key genes for regulating leaf color variation have been discovered in woody plants. Here, we summarize the progress of researches related to leaf color variation in woody plants, including studies on environmental factors, leaf microstructure, and molecular mechanism of leaf color variation and related genes, so as to provide a theoretical basis for further improving our understanding on the mechanism of leaf color variation in woody plants and cultivating additional ornamental colored woody trees.

参考文献

[1] 陈柯伊, 李朝娜, 成敏敏, 赵扬辉, 周明兵, 杨海芸 (2018). 不同叶色矢竹叶绿体结构和光系统特性差异. 植物学报 53, 509-518.
[2] 郭婷 (2021). 栾树彩叶突变体叶色变异机理的初步探究. 硕士论文. 北京: 北京林业大学. pp. 79.
[3] 韩辉, 宫伟 (2010). 不同土壤酸碱度对紫花槭秋季叶色变化的影响. 吉林农业 6, 76-80.
[4] 姜生辉 (2020). DNA甲基化修饰MdMYB1启动子调控苹果花青苷转运的机理. 博士论文. 泰安: 山东农业大学. pp. 114.
[5] 沈馨, 王开勇, 周晓杰, 刘勇 (2022). 不同土壤pH对银红槭叶色变化的影响. 西北林学院学报 37(2), 29-36.
[6] 司钰苇 (2020). 黄金芽遮阴绿化与返黄生理生化特性研究. 硕士论文. 长沙: 湖南农业大学. pp. 78.
[7] 宋雪薇, 魏解冰, 狄少康, 庞永珍 (2019). 花青素转录因子调控机制及代谢工程研究进展. 植物学报 54, 133-156.
[8] 王安喜 (2017). 彩叶植物资源在园林中的应用. 农业与技术 37( 18), 219.
[9] 王冬雪, 孙海菁, 德永军, 史久西 (2019). 不同光质处理对枫香幼苗叶色的影响. 林业科学研究 32(4), 158-164.
[10] 王改萍, 张磊, 姚雪冰, 祝遵凌 (2020). 金叶银杏叶色变化特性分析. 南京林业大学学报(自然科学版) 44(5), 41-48.
[11] 王晓娟, 杨东生, 先锐, 王光剑, 马光良, 周兰英 (2018). 干旱胁迫对红花檵木叶片色素含量及光合特性的影响. 四川林业科技 39(5), 82-86.
[12] 王艳琳 (2010). 2种彩叶植物光合生理特性研究. 硕士论文. 成都: 四川农业大学. pp. 54.
[13] 吴飞洋, 柳新红, 王成龙, 吕江波, 张丽芳, 李因刚 (2021). 土壤水分对乌桕秋叶生理指标及观赏效果的影响. 东北林业大学学报 49(5), 19-23, 44.
[14] 吴驭帆, 于萍, 祝遵凌 (2016). 春季不同叶色鹅耳枥叶片生理生化特性的研究. 西北农林科技大学学报(自然科学版) 44(5), 120-126, 132.
[15] 杨继生 (2020). 枫香变色过程中叶片结构及其生理特征的研究. 硕士论文. 南宁: 广西大学. pp. 82.
[16] 杨露, 于晓跃, 刘煜光, 史宝胜 (2016). 遮阴对2种彩叶风箱果叶色及光合特性的影响. 河北农业大学学报 39(5), 75-81.
[17] 张少露 (2017). 红叶石楠叶色变化过程中叶结构和生理特征研究. 硕士论文. 成都: 四川农业大学. pp. 50.
[18] 张淑珍 (2019). 芽变突变体金叶杨CLH基因的克隆及功能鉴定. 硕士论文. 成都: 四川农业大学. pp. 74.
[19] 张向娜, 熊立瑰, 温贝贝, 王坤波, 刘仲华, 黄建安, 李娟 (2020). 茶树叶色变异研究进展. 植物生理学报 56, 643-653.
[20] 张鑫, 肖婷婷, 李艰, 王玉涛, 刘广林 (2016). 水分胁迫对美国红枫幼苗生长及叶色变化的影响. 江苏农业科学 44, 224-227.
[21] 郑恬静, 王克凤, 桑瀚旭, 董然 (2017). 两种海棠秋季叶色变化的生理机制研究. 湖北农业科学 56, 2908-2912.
[22] 朱璐, 闻婧, 马秋月, 颜坤元, 杜一鸣, 李淑顺, 李倩中 (2022). 鸡爪槭金陵丹枫和金陵黄枫叶片呈色分析. 江苏农业学报 38, 521-527.
[23] 朱延林, 王念, 程相军, 周春生 (2012). 杨树新品种‘全红杨’. 林业科学 48(2), 188, 191.
[24] Al Sane KO, Hesham AEL (2015). Biochemical and genetic evidences of anthocyanin biosynthesis and accumulation in a selected tomato mutant. Rend Lincei Sci Fis Nat 26, 293-306.
[25] Albert NW, Davies KM, Lewis DH, Zhang HB, Montefiori M, Brendolise C, Boase MR, Ngo H, Jameson PE, Schwinn KE (2014). A conserved network of transcriptional activators and repressors regulates anthocyanin pig- mentation in eudicots. Plant Cell 26, 962-980.
[26] Cazzonelli CI, Pogson BJ (2010). Source to sink: regulation of carotenoid biosynthesis in plants. Trends Plant Sci 15, 266-274.
[27] Chen X, Li MH, Ni J, Hou JY, Shu X, Zhao WW, Su PF, Wang DC, Shah FA, Huang SW, Liu ZJ, Wu LF (2021). The R2R3-MYB transcription factor SsMYB1 positively regulates anthocyanin biosynthesis and determines leaf color in Chinese tallow (Sapium sebiferum Roxb.). Ind Crops Prod 164, 113335.
[28] Cho JS, Nguyen VP, Jeon HW, Kim MH, Eom SH, Lim YJ, Kim WC, Park EJ, Choi YI, Ko JH (2016). Overexpres-sion of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar. Tree Physiol 36, 1162-1176.
[29] Córdoba J, Molina-Cano JL, Martínez-Carrasco R, Mor-cuende R, Pérez P (2016). Functional and transcriptional characterization of a barley mutant with impaired photo-synthesis. Plant Sci 244, 19-30.
[30] Fan MC, Lian WJ, Li TT, Fan YH, Rao ZM, Li Y, Qian HF, Zhang H, Wu GC, Qi XG, Wang L (2020). Metabolomics approach reveals discriminatory metabolites associating with the blue pigments from Vaccinium bracteatum thunb. Leaves at different growth stages. Ind Crops Prod 147, 112252.
[31] Fu XM, Chen JM, Li JL, Dai GY, Tang JC, Yang ZY (2022). Mechanism underlying the carotenoid accumulation in sha- ded tea leaves. Food Chem X 14, 100323.
[32] James AM, Ma DW, Mellway R, Gesell A, Yoshida K, Walker V, Tran L, Stewart D, Reichelt M, Suvanto J, Salminen JP, Gershenzon J, Séguin A, Constabel CP (2017). Poplar myb115 and myb134 transcription factors regulate proanthocyanidin synthesis and structure. Plant Physiol 174, 154-171.
[33] Jing YJ, Lin RC (2020). Transcriptional regulatory network of the light signaling pathways. New Phytol 227, 683-697.
[34] Kr?utler B (2016). Breakdown of chlorophyll in higher plants—phyllobilins as abundant, yet hardly visible signs of ripening, senescence, and cell death. Angew Chem Int Ed Engl 55, 4882-4907.
[35] Li CF, Xu YX, Ma JQ, Jin JQ, Huang DJ, Yao MZ, Ma CL, Chen L (2016a). Biochemical and transcriptomic analyses reveal different metabolite biosynthesis profiles among three color and developmental stages in ‘Anji Baicha’ (Ca- mellia sinensis). BMC Plant Biol 16, 195.
[36] Li W, Tang S, Zhang S, Shan JG, Tang CJ, Chen QN, Jia GQ, Han YH, Zhi H, Diao XM (2016b). Gene mapping and functional analysis of the novel leaf color gene Si-YGL1 in foxtail millet (Setaria italica (L.) P. Beauv). Physiol Plant 157, 24-37.
[37] Li WX, Yang SB, Lu ZG, He ZC, Ye YL, Zhao BB, Wang L, Jin B (2018). Cytological, physiological, and transcript-tomic analyses of golden leaf coloration in Ginkgo biloba L. Hortic Res 5, 12.
[38] Li Y, Zhang ZY, Wang P, Wang SA, Ma LL, Li LF, Yang RT, Ma YZ, Wang Q (2015). Comprehensive transcript-tome analysis discovers novel candidate genes related to leaf color in a Lagerstroemia indica yellow leaf mutant. Genes Genomics 37, 851-863.
[39] Li YH, Wang BH, Dai ZY, Li AH, Liu GQ, Zuo SM, Zhang HX, Pan XB (2012). Morphological structure and genetic mapping of new leaf-color mutant gene in rice (Oryza sa-tiva). Rice Sci 19, 79-85.
[40] Lu YF, Zhang ML, Meng XN, Wan HH, Zhang J, Tian J, Hao SX, Jin KN, Yao YC (2015). Photoperiod and shading regulate coloration and anthocyanin accumulation in the leaves of Malus crabapples. Plant Cell Tissue Organ Cult 121, 619-632.
[41] Niu Y, Chen G, Peng DL, Song B, Yang Y, Li ZM, Sun H (2014). Grey leaves in an alpine plant: a cryptic colouration to avoid attack? New Phytol 203, 953-963.
[42] Schelbert S, Aubry S, Burla B, Agne B, Kessler F, Krupinska K, Hortensteiner S (2009). Pheophytin pheophorbide hydrolase (pheophytinase) is involved in chlorophyll breakdown during leaf senescence in Arabidop-sis. Plant Cell 21, 767-785.
[43] Sinkkonen A, Somerkoski E, Paaso U, Holopainen JK, Rousi M, Mikola J (2012). Genotypic variation in yellow autumn leaf colours explains aphid load in silver birch. New Phytol 195, 461-469.
[44] Sun TH, Rao S, Zhou XS, Li L (2022). Plant carotenoids: recent advances and future perspectives. Mol Hortic 2, 3.
[45] Tian YR, Li QQ, Rao SP, Wang AK, Zhang HC, Wang LS, Li Y, Chen JH (2021a). Metabolic profiling and gene ex-pression analysis provides insights into flavonoid and anthocyanin metabolism in poplar. Tree Physiol 41, 1046-1064.
[46] Tian YR, Rao SP, Li QQ, Xu M, Wang AK, Zhang HC, Chen JH (2021b). The coloring mechanism of a novel golden variety in Populus deltoides based on the RGB color mode. Forest Res 1, 5.
[47] Wang HH, Wang XQ, Song WM, Bao Y, Jin YL, Jiang CM, Wang CT, Li B, Zhang HX (2019). Pdmyb118, isolated from a red leaf mutant of Populus deltoids, is a new tran-scription factor regulating anthocyanin biosynthesis in poplar. Plant Cell Rep 38, 927-936.
[48] Wang LX, Pan DZ, Liang M, Abubakar YS, Li J, Lin JK, Chen SP, Chen W (2017). Regulation of anthocyanin biosynthesis in purple leaves of Zijuan tea (Camellia sinensis var. kitamura). Int J Mol Sci 18, 833.
[49] Wang XC, Wu J, Guan ML, Zhao CH, Geng P, Zhao Q (2020a). Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. Plant J 101, 637-652.
[50] Wang YM, Liu WW, Wang XW, Yang RJ, Wu ZY, Wang H, Wang L, Hu ZB, Guo SY, Zhang HL, Lin JX, Fu CX (2020b). MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar. Hortic Res 7, 118.
[51] Wu YQ, Guo J, Wang TL, Cao FL, Wang GB (2019). Transcriptional profiling of long noncoding RNAs associated with leaf-color mutation in Ginkgo biloba L. BMC Plant Biol 19, 527.
[52] Wu ZM, Zhang X, He B, Diao LP, Sheng SL, Wang JL, Guo XP, Su N, Wang LF, Jiang L, Wang CM, Zhai HQ, Wan JM (2007). A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll bio-synthesis. Plant Physiol 145, 29-40.
[53] Yang WZ, Yoon J, Choi H, Fan YL, Chen RM, An G (2015a). Transcriptome analysis of nitrogen-starvation-responsive genes in rice. BMC Plant Biol 15, 31.
[54] Yang YX, Chen XX, Xu B, Li YX, Ma YH, Wang GG (2015b). Phenotype and transcriptome analysis reveals chloroplast development and pigment biosynthesis together influenced the leaf color formation in mutants of Anthurium andraeanum ‘Sonate’. Front Plant Sci 6, 139.
[55] Yonekura-Sakakibara K, Higashi Y, Nakabayashi R (2019). The origin and evolution of plant flavonoid metabolism. Front Plant Sci 10, 943.
[56] Yu LJ, Sun YY, Zhang X, Chen MC, Wu T, Zhang J, Xing YF, Tian J, Yao YC (2022). ROS1 promotes low tem-perature-induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated ge- nes. Hortic Res 9, uhac007.
[57] Yudina PK, Ivanova LA, Ronzhina DA, Zolotareva NV, Ivanov LA (2017). Variation of leaf traits and pigment content in three species of steppe plants depending on the climate aridity. Russ J Plant Physiol 64, 410-422
[58] Zhu XY, Guo S, Wang ZW, Du Q, Xing YD, Zhang TQ, Shen WQ, Sang XC, Ling YH, He GH (2016). Map-based cloning and functional analysis of YGL8, which controls leaf colour in rice (Oryza sativa). BMC Plant Biol 16, 134.
文章导航

/