[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
研究报告

水稻穗部性状QTL定位及候选基因分析

  • 朱超宇 ,
  • 胡程翔 ,
  • 朱哲楠 ,
  • 张芷宁 ,
  • 汪理海 ,
  • 陈钧 ,
  • 李三峰 ,
  • 连锦瑾 ,
  • 唐璐瑶 ,
  • 钟芊芊 ,
  • 殷文晶 ,
  • 王跃星 ,
  • 饶玉春
展开
  • 1浙江师范大学生命科学学院, 金华 321004
    2中国水稻研究所水稻生物育种全国重点实验室, 杭州 310006
* E-mail: wangyuexing@caas.cn;


饶玉春, 博士/博士后, 教授, 博士生导师, “双龙学者”特聘教授。浙江省高校领军人才培养计划高层次拔尖人才(2022年), 金华市青年拔尖人才(2023年), 浙江省发明协会理事、植物遗传专业委员会副主任, 中国作物学会会员, 浙江省遗传学会会员。主要从事水稻等禾谷类作物的分子遗传学研究, 以第一作者或者通讯作者身份在Science Bulletin、New Phytologist等国际著名学术期刊上发表论文80余篇, 以合作者身份在Nature Plants、Proc Natl Acad Sci USA等杂志上发表论文30余篇。主持转基因国家重大专项子课题、国家自然科学基金、浙江省自然科学基金等项目。授权国家发明专利25项(第一完成人)。E-mail: ryc@zjnu.cn

收稿日期: 2023-12-04

  录用日期: 2024-01-30

  网络出版日期: 2024-01-30

基金资助

浙江省自然科学基金(LZ23C130003);2024年国家级大学生创新创业训练计划和2024年浙江省大学生科技创新活动计划暨新苗人才计划

Mapping of QTLs Associated with Rice Panicle Traits and Candidate Gene Analysis

  • Chaoyu Zhu ,
  • Chengxiang Hu ,
  • Zhenan Zhu ,
  • Zhining Zhang ,
  • Lihai Wang ,
  • Jun Chen ,
  • Sanfeng Li ,
  • Jinjin Lian ,
  • Luyao Tang ,
  • Qianqian Zhong ,
  • Wenjing Yin ,
  • Yuexing Wang ,
  • Yuchun Rao
Expand
  • 1College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
    2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China

Received date: 2023-12-04

  Accepted date: 2024-01-30

  Online published: 2024-01-30

摘要

水稻(Oryza sativa)穗部性状与产量直接相关, 其相关基因的挖掘与功能解析对于保障国家粮食安全意义重大。以籼稻华占(HZ)和粳稻热研2号(Nekken2)及构建的120个重组自交系(RILs)为实验材料, 测定了穗长、每穗粒数、结实率、柱头外露率及一次枝梗数等穗部性状。结合高密度分子遗传图谱进行QTL定位, 结果共检测到31个QTLs, 分别位于第1、2、3、4、5、6、10和11号染色体上, 其中2个位点的LOD值分别高达5.45与5.28。通过分析筛选QTL区间内可能影响穗部性状的相关基因, 并利用qRT-PCR进行基因表达检测, 发现LOC_Os05g05490LOC_Os05g06150LOC_Os03g11700LOC_Os03g12430LOC_Os05g28720LOC_Os05g30890LOC_Os05g31740LOC_Os02g17880在双亲间的表达水平差异显著。其中, 前5个基因编码三角状五肽重复蛋白, 而后3个基因编码糖基转移酶。研究挖掘到31个与穗部性状相关的QTLs, 为进一步定位和克隆相关基因, 从而选育高产水稻新品种奠定理论基础。

本文引用格式

朱超宇 , 胡程翔 , 朱哲楠 , 张芷宁 , 汪理海 , 陈钧 , 李三峰 , 连锦瑾 , 唐璐瑶 , 钟芊芊 , 殷文晶 , 王跃星 , 饶玉春 . 水稻穗部性状QTL定位及候选基因分析[J]. 植物学报, 2024 , 59(2) : 217 -230 . DOI: 10.11983/CBB23161

Abstract

Rice panicle traits have a distinct effect on yield, and the exploration and research of related genes play a crucial role in ensuring national food security. In this study, we used the indica rice HZ, the japonica rice Nekken2 and 120 recombinant inbred lines population constructed from them as experimental materials to measure panicle length, grain number per panicle, seed-setting rate, stigma exsertion rate, number of primary branches and other panicle traits. We combined the high-density genetic map for QTL mapping, a total of 31 QTLs were detected on chromosome 1, 2, 3, 4, 5, 6, 10 and 11, among which 2 LOD values were as high as 5.45 and 5.28. By analyzing the candidate genes in the QTL interval, the related genes that may affect the panicle traits were screened out, and qRT-PCR was used for gene expression analysis, which revealed that the expression levels of LOC_Os05g05490, LOC_Os05g06150, LOC_Os03g11700, LOC_Os03g12430, LOC_Os05g28720, LOC_Os05g30890, LOC_Os05g31740 and LOC_Os02g17880 were significantly different between the parents. Among these genes, the first five genes encode tripartite pentapeptide repeat proteins, while the latter three genes encode glycosyltransferases. This study identified 31 QTLs related to panicle traits, laying a theoretical basis for further localization and cloning of related genes and breeding new high-yield rice varieties.

[an error occurred while processing this directive]

参考文献

[1] Ashikari M, Sakakibara H, Lin SY, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005). Cytokinin oxidase regulates rice grain production. Science 309, 741-745.
[2] Chang YX, Gong L, Yuan WY, Li XW, Chen GX, Li XH, Zhang QF, Wu CY (2009). Replication protein A (RPA1a) is required for meiotic and somatic DNA repair but is dispensable for DNA replication and homologous recombination in rice. Plant Physiol 151, 2162-2173.
[3] Chen YNJ, Zhang XZ, Tai DW, Zhang PS, Gao GJ, Zhang QL, He YQ (2022). Mapping QTLs for rice stigma exsertion rate using recombinant inbred line population. Mol Plant Breed 20, 1198-1205. (in Chinese)
  陈应南君, 张效忠, 台德卫, 张培申, 高冠军, 张庆路, 何予卿 (2022). 利用重组自交系群体定位水稻柱头外露率QTL. 分子植物育种 20, 1198-1205.
[4] Duan JB, Yu H, Yuan K, Liao ZB, Meng XB, Jing YH, Liu GF, Chu JF, Li JY (2019). Strigolactone promotes cytokinin degradation through transcriptional activation of CYTOKININ OXIDASE/DEHYDROGENASE 9 in rice. Proc Natl Acad Sci USA 116, 14319-14324.
[5] Fan CC, Xing YZ, Mao HL, Lu TT, Han B, Xu CG, Li XH, Zhang QF (2006). GS3, a major QTL for grain length and weight and minor QTL for grain width and thickness in rice, encodes a putative transmembrane protein. Theor Appl Genet 112, 1164-1171.
[6] Hao JQ, Wang DK, Wu YB, Huang K, Duan PG, Li N, Xu R, Zeng DL, Dong GJ, Zhang BL, Zhang LM, Inzé D, Qian Q, Li YH (2021). The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Mol Plant 14, 1266-1280.
[7] Ikeda M, Miura K, Aya K, Kitano H, Matsuoka M (2013). Genes offering the potential for designing yield-related traits in rice. Curr Opin Plant Biol 16, 213-220.
[8] Jin JY, Luo YT, Yang HM, Lu T, Ye HF, Xie JY, Wang KX, Chen QY, Fang Y, Wang YX, Rao YC (2023). QTL mapping and expression analysis on candidate genes related to chlorophyll content in rice. Chin Bull Bot 58, 394-403. (in Chinese)
  金佳怡, 罗怿婷, 杨惠敏, 芦涛, 叶涵斐, 谢继毅, 王珂欣, 陈芊羽, 方媛, 王跃星, 饶玉春 (2023). 水稻叶绿素含量QTL定位与候选基因表达分析. 植物学报 58, 394-403.
[9] Komatsu M, Maekawa M, Shimamoto K, Kyozuka J (2001). The LAX1 and FRIZZY PANICLE 2 genes determine the inflorescence architecture of rice by controlling rachis- branch and spikelet development. Dev Biol 231, 364-373.
[10] Li JF, Wang BX, Liu Y, Liu JB, Chen TM, Sun ZG, Yang B, Xing YG, Chi M, Xu B, Xu DY (2022). Progress of research in functions of PPR proteins in growth and development of rice. J Plant Genet Resour 23, 358-367. (in Chinese)
  李景芳, 王宝祥, 刘艳, 刘金波, 陈庭木, 孙志广, 杨波, 邢运高, 迟铭, 徐波, 徐大勇 (2022). PPR蛋白在水稻生长发育中的功能研究进展. 植物遗传资源学报 23, 358-367.
[11] Li RX, Zhou K, Wang DC, Li QL, Xiang AN, Li L, Li MM, Xiang SQ, Ling YH, He GH, Zhao FM (2023). Analysis of QTLs and breeding of secondary substitution lines for panicle traits based on rice chromosome segment substitution line CSSL-Z481. Sci Agric Sin 56, 1228-1247. (in Chinese)
  李儒香, 周恺, 王大川, 李巧龙, 向奥妮, 李璐, 李苗苗, 向思茜, 凌英华, 何光华, 赵芳明 (2023). 水稻CSSL-Z481 代换片段携带的穗部性状 QTL 分析及次级代换系培育. 中国农业科学 56, 1228-1247.
[12] Li SC, Li WB, Huang B, Cao XM, Zhou XY, Ye SM, Li CB, Gao FY, Zou T, Xie KL, Ren Y, Ai P, Tang YF, Li XM, Deng QM, Wang SQ, Zheng AP, Zhu J, Liu HN, Wang LX, Li P (2013). Natural variation in PTB1 regulates rice seed setting rate by controlling pollen tube growth. Nat Commun 4, 2793.
[13] Liu EB, Liu Y, Wu GC, Zeng SY, Thi TGT, Liang LJ, Liang YF, Dong ZY, She D, Wang H, Zaid IU, Hong DL (2016a). Identification of a candidate gene for panicle length in rice (Oryza sativa L.) via association and linkage analysis. Front Plant Sci 7, 596.
[14] Liu WZ, Wu C, Fu YP, Hu GC, Si HM, Zhu L, Luan WJ, He ZQ, Sun ZX (2016b). Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230, 649-658.
[15] Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-??CT method. Methods 25, 402-408.
[16] McCouch SR, Cho YC, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997). Report on QTL nomenclature. Rice Genet Newsletter 14, 11-13.
[17] Pan CY, Ye HF, Zhou WY, Wang S, Li MJ, Lu M, Li SF, Zhu XD, Wang YX, Rao YC, Dai GX (2021). QTL mapping of candidate genes involved in Cd accumulation in rice grain. Chin Bull Bot 56, 25-32. (in Chinese)
  潘晨阳, 叶涵斐, 周维永, 王盛, 李梦佳, 路梅, 李三峰, 朱旭东, 王跃星, 饶玉春, 戴高兴 (2021). 水稻籽粒镉积累QTL定位及候选基因分析. 植物学报 56, 25-32.
[18] Qi P, Lin YS, Song XJ, Shen JB, Huang W, Shan JX, Zhu MZ, Jiang LW, Gao JP, Lin HX (2012). The novel quantitative trait locus GL3.1 controls rice grain size and yield by regulating Cyclin-T1;3. Cell Res 22, 1666-1680.
[19] Raj SRG, Nadarajah K (2022). QTL and candidate genes: techniques and advancement in abiotic stress resistance breeding of major cereals. Int J Mol Sci 24, 6.
[20] Song XJ, Huang W, Shi M, Zhu MZ, Lin HX (2007). A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 39, 623-630.
[21] Sun YW (2009). QTL Mapping for Agronomic Traits in Chromosome Segment Substitution Lines of Rice. Master’s thesis. Yangzhou: Yangzhou University. pp. 18-35. (in Chinese)
  孙亚伟 (2009). 水稻染色体单片段代换系农艺性状分析及QTL定位. 硕士论文. 扬州: 扬州大学. pp. 18-35.
[22] Wei HP, Lu T, Jia QW, Deng F, Zhu H, Qi ZH, Wang YX, Ye HF, Yin WJ, Fang Y, Mu D, Rao YC (2022). QTL mapping of candidate genes for heading date in rice. Chin Bull Bot 57, 588-595. (in Chinese)
  魏和平, 芦涛, 贾绮玮, 邓飞, 朱浩, 岂泽华, 王玉玺, 叶涵斐, 殷文晶, 方媛, 穆丹, 饶玉春 (2022). 水稻抽穗期 QTL定位及候选基因分析. 植物学报 57, 588-595.
[23] Wu XC, Gui JX, Liu T, Peng H, Yan YT, He X, Zhu XY, Zhang HQ, He JW (2023). Genome-wide association study for panicle length in rice. Mol Plant Breed 1-13. http://kns.cnki.net/kcms/detail/46.1068.S.20230703.1558.028.html (online). (in Chinese)
  吴心成, 桂金鑫, 刘瑫, 彭慧, 闫蕴韬, 何兮, 祝小雅, 张海清, 贺记外 (2023). 水稻穗长全基因组关联分析. 分子植物育种1-13. http://kns.cnki.net/kcms/detail/46.1068.S.20230703.1558.028.html (网络首发).
[24] Xing YZ, Zhang QE (2010). Genetic and molecular bases of rice yield. Annu Rev Plant Biol 61, 421-442.
[25] Xue WY, Xing YZ, Weng XY, Zhao Y, Tang WJ, Wang L, Zhou HJ, Yu SB, Xu CG, Li XH, Zhang QF (2008). Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40, 761-767.
[26] Yan CJ, Zhou JH, Yan S, Chen F, Yeboah M, Tang SZ, Liang GH, Gu MH (2007). Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet 115, 1093-1100.
[27] Yan YP, Yu XQ, Ren DY, Qian Q (2023). Genetic mechanisms and breeding utilization of grain number per panicle in rice. Chin Bull Bot 58, 359-372. (in Chinese)
  严语萍, 俞晓琦, 任德勇, 钱前 (2023). 水稻穗粒数遗传机制与育种利用. 植物学报 58, 359-372.
[28] Yang Y, Zhang Y, Li J, Xu P, Wu ZJ, Deng XN, Pu QH, Lv YG, Elgamal WHAS, Maniruzzaman S, Deng W, Zhou JW, Tao DY (2023). Three QTL from Oryza meridionalis could improve panicle architecture in Asian cultivated rice. Rice 16, 22.
[29] Yoshida A, Ohmori Y, Kitano H, Taguchi-Shiobara F, Hirano HY (2012). ABERRANT SPIKELET AND PANICLE1, encoding a TOPLESS-related transcriptional co-repressor, is involved in the regulation of meristem fate in rice. Plant J 70, 327-339.
[30] Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y, Chen RH, Yamazaki R, Tokunaga H, Kitaguchi Y, Sato Y, Nagamura Y, Ushijima T, Kumamaru T, Iida S, Maekawa M, Kyozuka J (2013). TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proc Natl Acad Sci USA 110, 767-772.
[31] Zhang L, Qi YZ, Wu MM, Zhao L, Zhao ZC, Lei CL, Hao YY, Yu XW, Sun YL, Zhang X, Guo XP, Ren YL (2021). Mitochondrion-targeted PENTATRICOPEPTIDE REPEAT5 is required for cis-splicing of nad4 intron 3 and endosperm development in rice. Crop J 9, 282-296.
[32] Zhang XJ, Wang JF, Huang J, Lan HX, Wang CL, Yin CF, Wu YY, Tang HJ, Qian Q, Li JY, Zhang HS (2012). Rare allele of OsPPKL1 associated with grain length causes extra-large grain and a significant yield increase in rice. Proc Natl Acad Sci USA 109, 21534-21539.
[33] Zhao MZ, Wang YZ, He N, Pang X, Wang LL, Ma ZB, Tang ZQ, Gao H, Zhang LY, Fu L, Wang CH, Liu JG, Zheng WJ (2022). QTL detection for rice grain length and fine mapping of a novel locus qGL6.1. Rice 15, 60.
[34] Zhuang H (2023). QTL Scanning of Rice Panicle Traits and Fine Mapping of qPL-3. Master’s thesis. Yangzhou: Yangzhou University. pp. 16-17. (in Chinese)
  庄昊 (2023). 水稻穗部性状的QTL检测及qPL-3的精细定位. 硕士论文. 扬州: 扬州大学. pp. 16-17.
文章导航

/

[an error occurred while processing this directive]