[an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]植物HIPP家族蛋白结构和功能研究进展
收稿日期: 2023-08-17
录用日期: 2023-11-02
网络出版日期: 2023-12-11
基金资助
三亚市科技创新专项(2022KJCX48);海南专项博士研究生科学研究基金(0201-6602-C22201);海南专项博士研究生科学研究基金(0201-6602-C22202)
Research Advances of Structure and Function of HIPP Family in Plants
Received date: 2023-08-17
Accepted date: 2023-11-02
Online published: 2023-12-11
张雅琦 , 戎福喜 , 沈雨欣 , 洪哲源 , 张蓝天 , 武亮 . 植物HIPP家族蛋白结构和功能研究进展[J]. 植物学报, 2024 , 59(4) : 659 -670 . DOI: 10.11983/CBB23112
Heavy metal-associated isoprenylated plant proteins (HIPPs) are a class of proteins characterized by the presence of heavy metal-associated domains (HMA) and C-terminal isoprenylation motifs in plants. Here, we introduce the structural characteristics of the HIPPs, review their potential roles in plant development and response to environmental changes (including biotic and abiotic stresses) as well as discuss their working mechanisms underlying their participation in heavy-metal homeostasis and detoxification. This comprehensive overview aims to provide valuable insights for future research on the HIPP family across diverse plant species.
Key words: HIPPs; HMA; heavy metals
[1] | Abreu ME, Munné-Bosch S (2009). Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana. J Exp Bot 60, 1261-1271. |
[2] | An TT, Huang D, Wang H, Zhang Y, Chen YL (2021). Research advances in plant physiological and biochemical mechanisms in response to cadmium stress. Chin Bull Bot 56, 347-362. (in Chinese) |
安婷婷, 黄帝, 王浩, 张一, 陈应龙 (2021). 植物响应镉胁迫的生理生化机制研究进展. 植物学报 56, 347-362. | |
[3] | Andrés-Colás N, Sancenón V, Rodríguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Pe?arrubia L (2006). The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots. Plant J 45, 225-236. |
[4] | Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu JZ, Matsumoto T, Ono K, Yano M (2008). Two adjacent nucleotide-binding site-leucine-rich repeat class genes are required to confer Pikm-specific rice blast resistance. Genetics 180, 2267-2276. |
[5] | Barth O, Vogt S, Uhlemann R, Zschiesche W, Humbeck K (2009). Stress induced and nuclear localized HIPP26 from Arabidopsis thaliana interacts via its heavy metal associated domain with the drought stress related zinc finger transcription factor ATHB29. Plant Mol Biol 69, 213-226. |
[6] | Barth O, Zschiesche W, Siersleben S, Humbeck K (2004). Isolation of a novel barley cDNA encoding a nuclear protein involved in stress response and leaf senescence. Physiol Plant 121, 282-293. |
[7] | Berner N, Reutter KR, Wolf DH (2018). Protein quality control of the endoplasmic reticulum and ubiquitin-proteasome-triggered degradation of aberrant proteins: yeast pioneers the path. Annu Rev Biochem 87, 751-782. |
[8] | Cao HW, Li C, Zhang BQ, Rono JK, Yang ZM (2022a). A metallochaperone HIPP33 is required for rice zinc and iron homeostasis and productivity. Agronomy 12, 488. |
[9] | Cao HW, Zhao YN, Liu XS, Rono JK, Yang ZM (2022b). A metal chaperone OsHIPP16 detoxifies cadmium by repressing its accumulation in rice crops. Environ Pollut 311, 120058. |
[10] | Chen GQ, Xiong S (2021). OsHIPP24 is a copper metallochaperone which affects rice growth. J Plant Biol 64, 145- 153. |
[11] | Clemens S (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88, 1707-1719. |
[12] | Crowell DN (2000). Functional implications of protein isoprenylation in plants. Prog Lipid Res 39, 393-408. |
[13] | Dangl JL, Jones JDG (2001). Plant pathogens and integrated defence responses to infection. Nature 411, 826- 833. |
[14] | De Abreu-Neto JB, Turchetto-Zolet AC, Bodanese Zanettini MH, Margis-Pinheiro M (2013). Heavy metal-associated isoprenylated plant protein (HIPP): characterization of a family of proteins exclusive to plants. FEBS J 280, 1604-1616. |
[15] | Dykema PE, Sipes PR, Marie A, Biermann BJ, Crowell DN, Randall SK (1999). A new class of proteins capable of binding transition metals. Plant Mol Biol 41, 139-150. |
[16] | Feng SJ, Liu XS, Ma LY, Khan IU, Rono JK, Yang ZM (2020). Identification of epigenetic mechanisms in paddy crop associated with lowering environmentally related cadmium risks to food safety. Environ Pollut 256, 113464. |
[17] | Feng SJ, Liu XS, Tao H, Tan SK, Chu SS, Oono Y, Zhang XD, Chen J, Yang ZM (2016). Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium. Plant Cell Environ 39, 2629-2649. |
[18] | Fukuoka S, Okuno K (2001). QTL analysis and mapping of pi21, a recessive gene for field resistance to rice blast in Japanese upland rice. Theor Appl Genet 103, 185-190. |
[19] | Fukuoka S, Saka N, Koga H, Ono K, Shimizu T, Ebana K, Hayashi N, Takahashi A, Hirochika H, Okuno K, Yano M (2009). Loss of function of a proline-containing protein confers durable disease resistance in rice. Science 325, 998-1001. |
[20] | Gao W, Xiao S, Li HY, Tsao SW, Chye ML (2009). Arabidopsis thaliana acyl-CoA-binding protein ACBP2 interacts with heavy-metal-binding farnesylated protein AtFP6. New Phytol 181, 89-102. |
[21] | Guo TQ, Weber H, Niemann MCE, Theisl L, Leonte G, Novák O, Werner T (2021). Arabidopsis HIPP proteins regulate endoplasmic reticulum-associated degradation of CKX proteins and cytokinin responses. Mol Plant 14, 1918-1934. |
[22] | Hu YA, Cheng HF, Tao S (2016). The challenges and solutions for cadmium-contaminated rice in China: a critical review. Environ Int 92-93, 515-532. |
[23] | Huffman DL, O’Halloran TV (2001). Function, structure, and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70, 677-701. |
[24] | Hung IH, Casareno RLB, Labesse G, Mathews FS, Gitlin JD (1998). HAH1 is a copper-binding protein with distinct amino acid residues mediating copper homeostasis and antioxidant defense. J Biol Chem 273, 1749-1754. |
[25] | Jones JDG, Dangl JL (2006). The plant immune system. Nature 444, 323-329. |
[26] | Jones JDG, Vance RE, Dangl JL (2016). Intracellular innate immune surveillance devices in plants and animals. Science 354, aaf6395. |
[27] | Kanzaki H, Yoshida K, Saitoh H, Fujisaki K, Hirabuchi A, Alaux L, Fournier E, Tharreau D, Terauchi R (2012). Arms race co-evolution of Magnaporthe oryzae AVR-Pik and rice Pik genes driven by their physical interactions. Plant J 72, 894-907. |
[28] | Khan IU, Rono JK, Liu XS, Feng SJ, Li H, Chen X, Yang ZM (2020). Functional characterization of a new metallochaperone for reducing cadmium concentration in rice crop. J Clean Prod 272, 123152. |
[29] | Khan IU, Rono JK, Zhang BQ, Liu XS, Wang MQ, Wang LL, Wu XC, Chen X, Cao HW, Yang ZM (2019). Identification of novel rice (Oryza sativa) HPP and HIPP genes tolerant to heavy metal toxicity. Ecotox Environ Safe 175, 8-18. |
[30] | Komárek M, Vaněk A, Ettler V (2013). Chemical stabiliza-tion of metals and arsenic in contaminated soils using oxides-a review. Environ Pollut 172, 9-22. |
[31] | Lee S, Kim YY, Lee Y, An G (2007). Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein. Plant Physiol 145, 831-842. |
[32] | Li H, Luo N, Li YW, Cai QY, Li HY, Mo CH, Wong MH (2017). Cadmium in rice: transport mechanisms, influencing factors, and minimizing measures. Environ Pollut 224, 622-630. |
[33] | Liu H, Zhao HX, Wu LH, Liu AN, Zhao FJ, Xu WZ (2017). Heavy metal ATPase 3 (HMA3) confers cadmium hyper-tolerance on the cadmium/zinc hyperaccumulator Sedum plumbizincicola. New Phytol 215, 687-698. |
[34] | Liu XS, Feng SJ, Zhang BQ, Wang MQ, Cao HW, Rono JK, Chen X, Yang ZM (2019). OsZIP1 functions as a metal efflux transporter limiting excess zinc, copper and cadmium accumulation in rice. BMC Plant Biol 19, 283. |
[35] | Longya A, Chaipanya C, Franceschetti M, Maidment JHR, Banfield MJ, Jantasuriyarat C (2019). Gene dupli-cation and mutation in the emergence of a novel aggres-sive allele of the AVR-Pik effector in the rice blast fungus. Mol Plant-Microbe Interact 32, 740-749. |
[36] | Maidment JHR, Franceschetti M, Maqbool A, Saitoh H, Jantasuriyarat C, Kamoun S, Terauchi R, Banfield MJ (2021). Multiple variants of the fungal effector AVR-Pik bind the HMA domain of the rice protein OsHIPP19, provi-ding a foundation to engineer plant defense. J Biol Chem 296, 100371. |
[37] | Maqbool A, Saitoh H, Franceschetti M, Stevenson CEM, Uemura A, Kanzaki H, Kamoun S, Terauchi R, Banfield MJ (2015). Structural basis of pathogen recognition by an integrated HMA domain in a plant NLR immune receptor. eLife 4, e08709. |
[38] | Moyroud E, Kusters E, Monniaux M, Koes R, Parcy F (2010). LEAFY blossoms. Trends Plant Sci 15, 346-352. |
[39] | Muller PAJ, Klomp LWJ (2009). ATOX1: a novel copper- responsive transcription factor in mammals? Int J Biochem Cell Biol 41, 1233-1236. |
[40] | Nakao M, Nakamura R, Kita K, Inukai R, Ishikawa A (2011). Non-host resistance to penetration and hyphal growth of Magnaporthe oryzae in Arabidopsis. Sci Rep 1, 171. |
[41] | Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ (2015). IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32, 268-274. |
[42] | Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997). Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853-856. |
[43] | Robinson NJ, Winge DR (2010). Copper metallochaperones. Annu Rev Biochem 79, 537-562. |
[44] | Rodríguez-Concepción M, Yalovsky S, Gruissem W (1999). Protein prenylation in plants: old friends and new targets. Plant Mol Biol 39, 865-870. |
[45] | Rono JK, Sun D, Yang ZM (2022). Metallochaperones: a critical regulator of metal homeostasis and beyond. Gene 822, 146352. |
[46] | Rono JK, Wang LL, Wu XC, Cao HW, Zhao YN, Khan IU, Yang ZM (2021). Identification of a new function of metallothionein-like gene OsMT1e for cadmium detoxification and potential phytoremediation. Chemosphere 265, 129136. |
[47] | Schmülling T, Werner T, Riefler M, Krupková E, Bartrina Y, Manns I (2003). Structure and function of cytokinin oxidase/dehydrogenase genes of maize, rice, Arabidopsis and other species. J Plant Res 116, 241-252. |
[48] | Shi Y, Jiang WJ, Li MY, Jiang N, Huang YY, Wang MT, Du ZY, Chen J, Li JH, Wu LY, Zhong M, Yang J, Huang J (2023). Metallochaperone protein OsHIPP17 regulates the absorption and translocation of cadmium in rice (Oryza sativa L.). Int J Biol Macromol 116, 125607. |
[49] | Song HD, Lin BR, Huang QL, Sun LH, Chen JS, Hu LL, Zhuo K, Liao JL (2021). The Meloidogyne graminicola effector MgMO289 targets a novel copper metallochaperone to suppress immunity in rice. J Exp Bot 72, 5638- 5655. |
[50] | Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001). LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98, 11806-11811. |
[51] | Strasser R (2018). Protein quality control in the endoplasmic reticulum of plants. Annu Rev Plant Biol 69, 147-172. |
[52] | Sun WJ, Wei JL, Wu GM, Xu HS, Chen Y, Yao M, Zhan JY, Yan J, Wu N, Chen H, Bu TL, Tang ZZ, Li QF (2022). CqZF-HD14 enhances drought tolerance in quinoa seed-lings through interaction with CqHIPP34 and CqNAC79. Plant Sci 323, 111406. |
[53] | Suzuki N, Yamaguchi Y, Koizumi N, Sano H (2002). Functional characterization of a heavy metal binding pro-tein CdI19 from Arabidopsis. Plant J 32, 165-173. |
[54] | Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa NK, Nakanishi H (2012). The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice. Plant Cell Environ 35, 1948-1957. |
[55] | Tehseen M, Cairns N, Sherson S, Cobbett CS (2010). Metallochaperone-like genes in Arabidopsis thaliana. Metallomics 2, 556-564. |
[56] | van der Hoorn RAL, Kamoun S (2008). From guard to decoy: a new model for perception of plant pathogen effe-ctors. Plant Cell 20, 2009-2017. |
[57] | Villiers F, Ducruix C, Hugouvieux V, Jarno N, Ezan E, Garin J, Junot C, Bourguignon J (2011). Investigating the plant response to cadmium exposure by proteomic and metabolomic approaches. Proteomics 11, 1650-1663. |
[58] | Wu WH, Wang L, Zhang S, Li ZK, Zhang Y, Lin F, Pan QH (2014). Stepwise arms race between AvrPik and Pik alle-les in the rice blast pathosystem. Mol Plant Microbe Inte-ract 27, 759-769. |
[59] | Wu XD, Rapoport TA (2018). Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol 53, 22-28. |
[60] | Xiong S, Kong XH, Chen GQ, Tian LH, Qian DD, Zhu Z, Qu LQ (2023). Metallochaperone OsHIPP9 is involved in the retention of cadmium and copper in rice. Plant Cell Environ 46, 1946-1961. |
[61] | Yalovsky S, Rodr??guez-Concepción M, Gruissem W (1999). Lipid modifications of proteins-slipping in and out of membranes. Trends Plant Sci 4, 439-445. |
[62] | Yoshida K, Saitoh H, Fujisawa S, Kanzaki H, Matsumura H, Yoshida K, Tosa Y, Chuma I, Takano Y, Win J, Kamoun S, Terauchi R (2009). Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21, 1573- 1591. |
[63] | Zhang BQ, Liu XS, Feng SJ, Zhao YN, Wang LL, Rono JK, Li H, Yang ZM (2020). Developing a cadmium resis-tant rice genotype with OsHIPP29 locus for limiting cad-mium accumulation in the paddy crop. Chemosphere 247, 125958. |
[64] | Zhang X, Feng H, Feng C, Xu H, Huang X, Wang Q, Duan X, Wang X, Wei G, Huang L, Kang Z (2015). Isolation and characterisation of cDNA encoding a wheat heavy metal-associated isoprenylated protein involved in stress responses. Plant Biol 17, 1176-1186. |
[65] | Zhao JF, Zhou HP, Li XY (2013). Ubiquitin-specific protease16 interacts with a heavy metal associated isopreny-lated plant protein27 and modulates cadmium tolerance. Plant Signal Behav 8, e25680. |
[66] | Zhao XX, Huang SQ, Tan WB, Xing W, Liu DL (2023). Identification and relative expression profile of HIPPs gene family cadmium stress in sugar beet. Acta Agronomica Sinica 49, 3302-3314. (in Chinese) |
赵晓鑫, 黄烁淇, 谭文勃, 兴旺, 刘大丽 (2023). 甜菜HIPPs基因家族鉴定与镉胁迫下的表达分析. 作物学报 49, 3302-3314. | |
[67] | Zhao YN, Wang MQ, Li C, Cao HW, Rono JK, Yang ZM (2022). The metallochaperone OsHIPP56 gene is requi-red for cadmium detoxification in rice crops. Environ Exp Bot 193, 104680. |
[68] | Zheng QL, Yu QH, Wu N, Yao WK, Li JD, Lv K, Xu WR (2023). A grape VvHOS1-interacting HIPP protein (VvHIPP21) negatively regulates cold and drought stress. En-viron Exp Bot 207, 105203. |
[69] | Zschiesche W, Barth O, Daniel K, B?hme S, Rausche J, Humbeck K (2015). The zinc-binding nuclear protein HIPP3 acts as an upstream regulator of the salicylate- dependent plant immunity pathway and of flowering time in Arabidopsis thaliana. New Phytol 207, 1084-1096. |
/
〈 | 〉 |