研究报告

耐亚磷酸盐马铃薯的筛选与评价

  • 张锋 ,
  • Richard Dormatey ,
  • 刘寅笃 ,
  • 李成举 ,
  • 王云姣 ,
  • 张春利 ,
  • 张莹 ,
  • 范又方 ,
  • 姚攀锋 ,
  • 毕真真 ,
  • 刘玉汇 ,
  • 白江平 ,
  • 孙超
展开
  • 甘肃农业大学农学院/干旱生境作物学国家重点实验室/甘肃省作物遗传改良与种质创新重点实验室, 兰州 730070
*白江平, 甘肃农业大学农学院教授, 博士生导师, 中国作物学会常务理事, 全国农业生化与分子生物学学会常务理事, 中国欧美同学会第八届理事会理事。2020年受聘于农业农村部国家马铃薯产业体系岗位科学家。主要研究方向为马铃薯遗传育种、作物逆境生理及分子生物学。研究团队利用遗传学、基因组学、蛋白质组学以及计算机科学等手段, 选育优质马铃薯抗旱种质资源并解析其品种改良的基础遗传学规律, 精细定位重要农艺性状的遗传控制位点, 通过优化全基因组选择模型以及应用基因组编辑技术开发新一代植物育种体系。E-mail: baijp@gsau.edu.cn;
sunc@gsau.edu.cn

收稿日期: 2023-08-09

  录用日期: 2023-11-14

  网络出版日期: 2023-12-04

基金资助

国家自然科学基金(32060502);甘肃省科技计划(21JR7RA804);国家现代农业产业技术体系(CARS-09-P10);省部共建干旱生境作物学国家重点实验室开放基金(GSCS-2022-Z01)

Screening and Evaluation of Phosphite-tolerant Potatoes

  • Feng Zhang ,
  • Richard Dormatey ,
  • Yindu Liu ,
  • Chengju Li ,
  • Yunjiao Wang ,
  • Chunli Zhang ,
  • Ying Zhang ,
  • Youfang Fan ,
  • Panfeng Yao ,
  • Zhenzhen Bi ,
  • Yuhui Liu ,
  • Jiangping Bai ,
  • Chao Sun
Expand
  • Gansu Key Lab of Crop Improvement & Germplasm Enhancement/State Key Laboratory of Aridland Crop Science/College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China

Received date: 2023-08-09

  Accepted date: 2023-11-14

  Online published: 2023-12-04

摘要

磷是植物生长发育不可或缺的营养元素之一, 正磷酸盐(P)在土壤中含量丰富, 但由于土壤的固定作用, 其中能被植物吸收利用的有效磷含量并不高, 提高植物对土壤磷的吸收利用能力, 或优化磷肥施用, 已成为亟待解决的问题。土壤中亚磷酸盐(PH)的含量仅次于正磷酸盐, 其具有更高的溶解度, 可在植物木质部与韧皮部之间进行双向运输, 不易被土壤固定, 但亚磷酸盐作为磷肥替代正磷酸盐和选育耐亚磷酸盐作物品种的研究鲜有报道。基于此, 该研究选取5份引进的马铃薯(Solanum tuberosum)品种和1个商业品种青薯9号(QS9)为实验材料, 经驯化炼苗后直接栽入试验田, 设置正常磷肥处理和亚磷酸盐替代处理, 测定不同品种的表型、光合作用效率和干物质等指标, 以各单项耐亚磷酸盐系数(PTC)为衡量依据, 利用主成分分析等方法对不同马铃薯品种的PH耐性进行综合评价。结果表明, 6个马铃薯品种可分为高度耐亚磷酸盐型(C115和D13)、弱耐亚磷酸盐型(C20、C31和QS9)和亚磷酸盐敏感型(C80) 3类。该研究评价了不同马铃薯品种对亚磷酸盐的耐受性, 旨在为马铃薯耐亚磷酸盐品种选育和亚磷酸盐新型肥料开发提供科学依据。

本文引用格式

张锋 , Richard Dormatey , 刘寅笃 , 李成举 , 王云姣 , 张春利 , 张莹 , 范又方 , 姚攀锋 , 毕真真 , 刘玉汇 , 白江平 , 孙超 . 耐亚磷酸盐马铃薯的筛选与评价[J]. 植物学报, 2024 , 59(4) : 544 -557 . DOI: 10.11983/CBB23108

Abstract

Phosphorus is one of the indispensable nutrients for plant growth and development. Orthophosphate (P) content in the soil is particularly rich, but due to the fixation of the soil, the effective phosphorus content that can be absorbed and utilized by plants is not high. Therefore improving the absorption and utilization capacity of plants to soil phosphorus, or optimizing the application of phosphate fertilizer has become an urgent problem that needs to be solved. The content of phosphite (PH) in soil is second only after orthophosphate, which has the characteristics of higher solubili- ty, two-way transport between plant xylem and phloem, but is not easy to be fixed by soil. Research on phosphite as phosphate fertilizer to replace orthophosphate fertilizer and phosphite-tolerant crop varieties breeding has rarely been reported. Therefore, in this study, five introduced potato (Solanum tuberosum) genotypes and one commercial variety Qingshu No.9 (QS9) were selected as research materials, and the seedlings were directly planted into the test field after domestication and refining, and normal phosphate fertilizer treatment and phosphite substitution treatment were set up to determine the phenotype, photosynthesis, dry matter and other indicators of different genotypes. Moreover, the phosphite tolerant coefficient (PTC) of each indicator was used as the measurement basis. Comprehensive evaluation of the PH resistance of different potato genotypes was conducted based on principal component analysis and other methods. The obtained results showed that the six potato varieties can be classified into three types: highly phosphite-tolerant (C115, and D13), weakly phosphite-tolerant (C20, C31, and QS9) and phosphite-sensitive (C80). This study evaluated the tole- rance of different potato genotypes to phosphite, thus providing scientific basis for the selection of phosphite-tolerant varieties and the development of new phosphite fertilizers.

参考文献

[1] 陈磊, 王盛锋, 刘荣乐, 汪洪 (2012). 不同磷供应水平下小麦根系形态及根际过程的变化特征. 植物营养与肥料学报 18, 324-331.
[2] 戴海芳, 武辉, 阿曼古丽·买买提阿力, 王立红, 麦麦提·阿皮孜, 张巨松 (2014). 不同基因型棉花苗期耐盐性分析及其鉴定指标筛选. 中国农业科学 47, 1290-1300.
[3] 雷菲, 潘孝忠, 吴宇佳, 曾新宇, 曾建华, 张冬明 (2021). 基施亚磷酸钾对“琼辣3号”线椒养分吸收和土壤环境的影响. 分子植物育种 19, 8279-8286.
[4] 李宝玉, 高明杰, 高春雨, 余婧婧 (2017). 亚磷酸盐在农业上的应用及机制研究进展. 南京农业大学学报 40, 949-956.
[5] 李宝玉, 刘富强, 郭燕枝 (2021). 亚磷酸钾在马铃薯上的增产及抗病效果. 中国蔬菜 (9), 63-68.
[6] 李彩斌, 郭华春 (2017). 马铃薯品种耐弱光性评价及其指标的筛选. 中国农业科学 50, 3461-3472.
[7] 刘明, 范文静, 赵鹏, 靳容, 张强强, 朱晓亚, 王静, 李强 (2023). 甘薯耐低钾基因型苗期筛选及综合评价. 作物学报 49, 926-937.
[8] 屈冬玉, 谢开云, 金黎平, 庞万福, 卞春松, 段绍光 (2005). 中国马铃薯产业发展与食物安全. 中国农业科学 38, 358- 362.
[9] 任士伟, 王亮亮, 张萍萍, 王娜 (2019). 喷施亚磷酸钾对番茄生长发育的影响. 黑龙江农业科学 (6), 50-53.
[10] 石瑶 (2002). 利用亚磷酸防治作物疫病. 中国农村科技 (5), 18.
[11] 孙璐, 周宇飞, 汪澈, 肖木辑, 陶冶, 许文娟, 黄瑞冬 (2012). 高粱品种萌发期耐盐性筛选与鉴定. 中国农业科学 45, 1714- 1722.
[12] 王吉祥, 宫焕宇, 屠祥建, 郭侲洐, 赵嘉楠, 沈健, 栗振义, 孙娟 (2021). 耐亚磷酸盐紫花苜蓿品种筛选及评价指标的鉴定. 草业学报 30(5), 186-199.
[13] 王宁, 焦晓燕, 武爱莲, 王劲松, 董二伟, 郭珺, 丁玉川, 王立革 (2016). 生物炭对土壤磷、钾养分影响研究进展. 山西农业科学 44, 1402-1405, 1420.
[14] 杨春婷, 张永清, 马星星, 陈伟, 董璐, 张楚, 路之娟 (2018). 苦荞耐低磷基因型筛选及评价指标的鉴定. 应用生态学报 29, 2997-3007.
[15] 张邦喜, 李渝, 秦松, 李国学, 蒋太明 (2016). 长期施肥下黄壤无机磷组分空间分布特征. 华北农学报 31(3), 212-217.
[16] 张汝, 李晓荣, 张美俊, 乔治军, 陈凌 (2017). 苗期耐亚磷酸盐糜子品种的筛选. 山西农业科学 45, 1310-1314.
[17] 张韫 (2011). 土壤·水·植物理化分析教程. 北京: 中国林业出版社. pp. 229-232.
[18] Achary VMM, Ram B, Manna M, Datta D, Bhatt A, Reddy MK, Agrawal PK (2017). Phosphite: a novel P fertilizer for weed management and pathogen control. Plant Biotechnol J 15, 1493-1508.
[19] Baker A, Ceasar SA, Palmer AJ, Paterson JB, Qi WJ, Muench SP, Baldwin SA (2015). Replace, reuse, recycle: improving the sustainable use of phosphorus by plants. J Exp Bot 66, 3523-3540.
[20] Broschat TK (2006). Effects of phosphorous and phosphoric acids on growth and phosphorus concentrations in container-grown tropical ornamental plants. HortTechnology 16, 105-108.
[21] Cordell D, White S (2011). Peak phosphorus: clarifying the key issues of a vigorous debate about long-term phosphorus security. Sustainability 3, 2027-2049.
[22] Dawson CJ, Hilton J (2011). Fertiliser availability in a resource-limited world: production and recycling of nitrogen and phosphorus. Food Policy 36, S14-S22.
[23] Dormatey R, Sun C, Ali K, Qin TY, Xu DR, Bi ZZ, Bai JP (2021). Influence of phosphite supply in the MS medium on root morphological characteristics, fresh biomass and enzymatic behavior in five genotypes of potato (Solanum tuberosum L.). Horticulturae 7, 265.
[24] Fang ZY, Shao C, Meng YJ, Wu P, Chen M (2009). Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176, 170-180.
[25] Glinicki R, Sas-Paszt L, Jadczuk-Tobjasz E (2010). The effect of plant stimulant/fertilizer “Resistim” on growth and development of strawberry plants. J Fruit Ornam Plant Res 18, 111-124.
[26] Grant CA, Flaten DN, Tomasiewicz DJ, Sheppard SC (2001). The importance of early season phosphorus nutrition. Can J Plant Sci 81, 211-224.
[27] King M, Reeve W, Van der Hoek MB, Williams N, McComb J, O’Brien PA, Hardy GESJ (2010). Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Mol Genet Genom 284, 425-435.
[28] Lobato MC, Olivieri FP, Altamiranda EAG, Wolski EA, Daleo GR, Caldiz DO, Andreu AB (2008). Phosphite compounds reduce disease severity in potato seed tubers and foliage. Eur J Plant Pathol 122, 349-358.
[29] López-Arredondo DL, Leyva-González MA, González- Morales SI, López-Bucio J, Herrera-Estrella L (2014). Phosphate nutrition: improving low-phosphate tolerance in crops. Annu Rev Plant Biol 65, 95-123.
[30] Lovatt CJ, Mikkelsen RL (2006). Phosphite fertilizers: what are they? Can you use them? What can they do? Better Crops 90, 11-13.
[31] McDonald AE, Grant BR, Plaxton WC (2001). Phosphite (phosphorous acid): its relevance in the environment and agriculture and influence on plant phosphate starvation response. J Plant Nutr 24, 1505-1519.
[32] Rickard DA (2000). Review of phosphorus acid and its salts as fertilizer materials. J Plant Nutr 23, 161-180.
[33] Schachtman DP, Reid RJ, Ayling SM (1998). Phosphorus uptake by plants: from soil to cell. Plant Physiol 116, 447- 453.
[34] Schroetter S, Angeles-Wedler D, Kreuzig R, Schnug E (2006). Effects of phosphite on phosphorus supply and growth of corn (Zea mays). Landbauforschung Volkenrode 56, 87-99.
[35] Singh VK, Wood SM, Knowles VL, Plaxton WC (2003). Phosphite accelerates programmed cell death in phosphate-starved oilseed rape (Brassica napus) suspension cell culture. Planta 218, 233-239.
[36] Thao HTB, Yamakawa T (2009). Phosphite (phosphorous acid): fungicide, fertilizer or bio-stimulator? Soil Sci Plant Nutr 55, 228-234.
[37] Ticconi CA, Delatorre CA, Abel S (2001). Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiol 127, 963-972.
[38] Varadarajan DK, Karthikeyan AS, Matilda PD, Raghothama KG (2002). Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiol 129, 1232-1240.
文章导航

/