[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
热点评述

烽火狼烟: 水杨酸甲酯介导的植物间通讯和气传性免疫的机制解析

展开
  • 中国科学院分子植物科学卓越创新中心, 植物生理生态研究所, 上海 200032

收稿日期: 2023-09-12

  录用日期: 2023-09-13

  网络出版日期: 2023-09-14

基金资助

科技部重点研发计划(2021YFA1301800);中国博士后科学基金(BX2021313);中国博士后科学基金(2022M713150)

Study Uncovers a New Signaling Circuit Mediating Airborne Defense of Plants Against Aphids and Viruses

Expand
  • Institute of Plant Physiology and Ecology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai 200032, China

Received date: 2023-09-12

  Accepted date: 2023-09-13

  Online published: 2023-09-14

摘要

蚜虫(aphids)及其携带的病毒是全球农作物生产过程中最具破坏性的病虫害之一。植物一旦被蚜虫侵染, 会产生并释放挥发性有机化合物(VOCs), 进而通过空气传播至周围植物, 激活邻近植物对昆虫和病毒的抗性, 称为气传性免疫(AD)。而对于植物如何产生挥发性信号分子以及邻近植物如何感知并激活抗病虫的机制尚不清楚。近期, 清华大学刘玉乐研究团队在植物间通讯介导邻近植物抗虫和抗病毒研究方面取得了新突破, 他们揭示了一条由水杨酸甲酯(MeSA)-水杨酸结合蛋白SABP2-转录因子NAC2-水杨酸羧基甲基转移酶SAMT1组成的信号通路介导邻近植物抗虫和抗病毒能力。该研究还发现由蚜虫传播的一些病毒编码蛋白能够通过与NAC2转录因子互作促进NAC2的出核和降解, 从而破坏植物间的信号交流以促进蚜虫及病毒的侵染。该研究全面阐释了蚜虫与其传播的病毒间共同进化的新的互惠关系, 填补了植物抗病虫、特别是气传性免疫领域的空白, 同时为培育抗虫、抗病毒作物提供了新思路及潜在基因。

本文引用格式

袁民航, 辛秀芳 . 烽火狼烟: 水杨酸甲酯介导的植物间通讯和气传性免疫的机制解析[J]. 植物学报, 2023 , 58(5) : 682 -686 . DOI: 10.11983/CBB23126

Abstract

Aphids and the viruses transmitted by them cause some of the most devastating plant diseases across the globe. Once infected by aphids, plants can produce and release volatile organic compounds (VOCs), which are transmitted through air and elicit defense in neighboring plants (airborne defense, AD). However, the mechanisms underlying AD remained largely elusive. Dr. Yule Liu’s group at Tsinghua University, China, recently reports a new study and they identify a new signaling circuit, comprising methyl-salicylate (MeSA), salicylic-acid (SA)-binding protein-2 (SABP2), a transcription factor NAC2 and SA-carboxylmethyltransferase-1 (SAMT1) converting SA to MeSA, that mediate interplant communication and airborne defense against aphids and viruses. Furthermore, some virus-encoded virulence proteins could interact with NAC2 transcription factor to reduce the nuclear localization and promotes the degradation of NAC2, thereby suppressing the interplant AD and promoting viral transmission. This comprehensive study provides new mechanistic insights into airborne defense of plants and unravels an amazing aphid/virus co-evolutionary mutualism. It also sets the foundation for new approaches of using AD to control aphid and virus diseases in agriculturally-important plants.

[an error occurred while processing this directive]

参考文献

[1] Arimura GL, Ozawa R, Shimoda T, Nishioka T, Boland W, Takabayashi J (2000). Herbivory-induced volatiles elicit defence genes in lima bean leaves. Nature 406, 512-515.
[2] Babikova Z, Gilbert L, Bruce TJA, Birkett M, Caulfield JC, Woodcock C, Pickett JA, Johnson D (2013). Underg-round signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecol Lett 16, 835-843.
[3] Baldwin IT, Kessler A, Halitschke R (2002). Volatile sig-naling in plant-plant-herbivore interactions: what is real? Curr Opin Plant Biol 5, 351-354.
[4] Casteel CL, Yang CL, Nanduri AC, De Jong HN, Whitham SA, Jander G (2014). The NIa-Pro protein of Turnip mosaic virus improves growth and reproduction of the aphid vector, Myzus persicae (green peach aphid). Plant J 77, 653-663.
[5] Dudareva N, Raguso RA, Wang J, Ross JR, Pichersky E (1998). Floral scent production in Clarkia breweri. III. Enzy-matic synthesis and emission of benzenoid esters. Plant Physiol 116, 599-604.
[6] Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004). Airborne signals prime plants against insect her-bivore attack. Proc Natl Acad Sci USA 101, 1781-1785.
[7] Forouhar F, Yang Y, Kumar D, Chen Y, Fridman E, Park SW, Chiang Y, Acton TB, Montelione GT, Pichersky E, Klessig DF, Tong L (2005). Structural and biochemical studies identify tobacco SABP2 as a methyl salicylate esterase and implicate it in plant innate immunity. Proc Natl Acad Sci USA 102, 1773-1778.
[8] Gong Q, Wang YJ, He LF, Huang F, Zhang DF, Wang Y, Wei X, Han M, Deng HT, Luo L, Cui F, Hong YG, Liu YL (2023). Molecular basis of methyl salicylate-mediated plant airborne defense. Nature https://www.nature.com/articles/-s41586-41023-06533-41583.
[9] Haxim Y, Ismayil A, Jia Q, Wang Y, Zheng XY, Chen TY, Qian LC, Liu N, Wang YJ, Han SJ, Cheng JX, Qi YJ, Hong YG, Liu YL (2017). Autophagy functions as an antiviral mechanism against geminiviruses in plants. eLife 6, e23897.
[10] Ismayil A, Yang M, Haxim Y, Wang YJ, Li JL, Han L, Wang Y, Zheng XY, Wei X, Nagalakshmi U, Hong YG, Hanley-Bowdoin L, Liu YL (2020). Cotton leaf curl Mul-tan virus betaC1 protein induces autophagy by disrupting the interaction of autophagy-related protein 3 with glyce-raldehyde-3-phosphate dehydrogenases. Plant Cell 32, 1124-1135.
[11] Jia Q, Liu N, Xie K, Dai YW, Han SJ, Zhao XJ, Qian LC, Wang YJ, Zhao JP, Gorovits R, Xie DX, Hong YG, Liu YL (2016). CLCuMuB betaC1 subverts ubiquitination by interacting with NbSKP1s to enhance geminivirus infection in Nicotiana benthamiana. PLoS Pathog 12, e1005668.
[12] Karban R, Yang LH, Edwards KF (2014). Volatile communication between plants that affects herbivory: a meta- analysis. Ecol Lett 17, 44-52.
[13] Li R, Weldegergis BT, Li J, Jung C, Qu J, Sun YW, Qian HM, Tee C, Van Loon JJA, Dicke M, Chua NH, Liu SS, Ye J (2014). Virulence factors of geminivirus interact with MYC2 to subvert plant resistance and promote vector performance. Plant Cell 26, 4991-5008.
[14] Loreto F, D'Auria S (2022). How do plants sense volatiles sent by other plants? Trends Plant Sci 27, 29-38.
[15] Loreto F, Dicke M, Schnitzler JP, Turlings TCJ (2014). Plant volatiles and the environment. Plant Cell Environ 37, 1905-1908.
[16] Mallinger RE, Hogg DB, Gratton C (2011). Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroe-cosystems. J Econ Entomol 104, 115-124.
[17] Moreira X, Nell CS, Katsanis A, Rasmann S, Mooney KA (2018). Herbivore specificity and the chemical basis of plant-plant communication in Baccharis salicifolia (Asteraceae). New Phytol 220, 703-713.
[18] Ninkovic V, Glinwood R, ünlü AG, Ganji S, Unelius CR (2021). Effects of methyl salicylate on host plant acceptance and feeding by the aphid Rhopalosiphum padi. Front Plant Sci 12, 710268.
[19] Park SW, Kaimoyo E, Kumar D, Mosher S, Klessig DF (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318, 113-116.
[20] Staudt M, Jackson B, El-Aouni H, Buatois B, Lacroze JP, Poessel JL, Sauge MH (2010). Volatile organic compound emissions induced by the aphid Myzus persicae differ among resistant and susceptible peach cultivars and a wild relative. Tree Physiol 30, 1320-1334.
[21] Wang YJ, Gong Q, Wu YY, Huang F, Ismayil A, Zhang DF, Li HG, Gu HQ, Ludman M, Fátyol K, Qi YJ, Yoshioka K, Hanley-Bowdoin L, Hong YG, Liu YL (2021). A calmodu-lin-binding transcription factor links calcium signaling to antiviral RNAi defense in plants. Cell Host Microbe 29, 1393-1406.
[22] Yang M, Ismayil A, Jiang ZH, Wang Y, Zheng XY, Yan LM, Hong YG, Li DW, Liu YL (2022). A viral protein disrupts vacuolar acidification to facilitate virus infection in plants. EMBO J 41, e108713.
[23] Zhao PZ, Yao XM, Cai CX, Li R, Du J, Sun YW, Wang MY, Zou Z, Wang QM, Kliebenstein DJ, Liu SS, Fang RX, Ye J (2019). Viruses mobilize plant immunity to deter nonvector insect herbivores. Sci Adv 5, eaav9801.
文章导航

/

[an error occurred while processing this directive]