研究报告

水稻叶绿素含量QTL定位与候选基因表达分析

展开
  • 1浙江师范大学生命科学学院, 金华 321004
    2中国水稻研究所, 水稻生物学国家重点实验室, 杭州 310006

收稿日期: 2022-11-08

  录用日期: 2023-02-09

  网络出版日期: 2023-02-10

基金资助

浙江省自然科学基金重点项目(LZ23C130003);国家级大学生创新创业训练计划(202210345029);浙江省大学生科技创新活动计划暨新苗人才计划(2022R404A005)

QTL Mapping and Expression Analysis on Candidate Genes Related to Chlorophyll Content in Rice

Expand
  • 1College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
    2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China

Received date: 2022-11-08

  Accepted date: 2023-02-09

  Online published: 2023-02-10

摘要

水稻(Oryza sativa)是我国主要粮食作物之一。提高水稻叶片叶绿素含量, 进而提高其光合作用效率是实现高产稳产的重要途径之一。该研究以父系籼稻品种华占(HZ)、母系粳稻品种热研2号(Nekken2)及其构建的120个重组自交系(RILs)为实验材料, 在分蘖期和成熟期分别对亲本及其后代剑叶的叶绿素含量(SPAD值)进行测定, 同时基于已构建的高密度遗传连锁图谱进行QTL定位。结果共挖掘到20个与叶绿素含量相关的QTLs (分蘖期7个, 成熟期13个), LOD值最高达4.77。利用qRT-PCR方法检测QTL区间内与叶绿素含量相关的候选基因的表达, 发现LOC_Os06g11780LOC_Os06g12360LOC_Os06g39716LOC_Os08g42610LOC_Os02g18500LOC_Os03g21240LOC_Os03g21400LOC_Os03g21780LOC_Os03g30950LOC_Os03g40550基因的表达量在双亲间差异显著。结合基因表达量及亲本叶绿素表型数据, 推测LOC_Os06g11780LOC_Os06g12360LOC_Os08g42610的高表达极大地提高了水稻叶绿素含量, 进而有效提高植物光合产能。研究结果为筛选和培育高光能利用效率的水稻新品种提供了有利的遗传资源, 并为揭示水稻叶绿素含量的动态变化规律及分子调控机制奠定了重要基础。

本文引用格式

金佳怡, 罗怿婷, 杨惠敏, 芦涛, 叶涵斐, 谢继毅, 王珂欣, 陈芊羽, 方媛, 王跃星, 饶玉春 . 水稻叶绿素含量QTL定位与候选基因表达分析[J]. 植物学报, 2023 , 58(3) : 394 -403 . DOI: 10.11983/CBB22259

Abstract

Rice (Oryza sativa) is one of a major food crops in China. Increasing chlorophyll content in rice leaves and thus promoting its photosynthetic efficiency is one of the most important ways to obtain high and stable yields. In this study, 120 recombinant inbred lines (RILs) were constructed from the paternal indica rice HZ and the maternal japonica rice Nekken2 and they were used as experimental materials. We measured the flag leaf chlorophyll content (SPAD) of the parents and their progeny at the tillering and maturing stages. Meanwhile, the quantitative trait locus (QTL) mapping was carried out based on the high-density genetic map. Twenty QTLs related to chlorophyll content (7 at tillering stage and 13 at maturity stage) were identified, with the highest LOD score of 4.77. The expression of candidate genes associated with chlorophyll content within these QTL regions was analyzed by qRT-PCR, which showed that LOC_Os06g11780, LOC_Os06g12360, LOC_Os06g39716, LOC_Os08g42610, LOC_Os02g18500, LOC_Os03g21240, LOC_Os03g21400, LOC_Os03g21780, LOC_Os03g30950, and LOC_Os03g40550 were significantly different between the parents. Combining the gene expression and parental chlorophyll phenotype data, we think that the high expression of LOC_ Os06g11780, LOC_Os06g12360 and LOC_Os08g42610 might greatly enhance the chlorophyll content of rice, which in turn effectively promoted the photosynthetic productivity of the plants. The results provide favorable genetic resources for screening and breeding new rice varieties for efficient light energy utilization, and lay an important foundation for revealing the dynamic change pattern and the molecular regulation mechanism of chlorophyll content in rice.

参考文献

[1] 范淑秀, 王嘉宇, 毛艇, 徐正进 (2010). 水稻孕穗期叶绿素含量的QTL定位. 华北农学报 25(4), 69-72.
[2] 姜树坤, 张喜娟, 王嘉宇, 徐正进, 陈温福, 张凤鸣 (2012). 水稻叶绿素含量的动态QTL剖析. 东北农业大学学报 43 (7), 47-52.
[3] 李景芳, 王宝祥, 刘艳, 刘金波, 陈庭木, 孙志广, 杨波, 邢运高, 迟铭, 徐波, 徐大勇 (2022). PPR蛋白在水稻生长发育中的功能研究进展. 植物遗传资源学报 23, 358-367.
[4] 李永洪, 李传旭, 刘成元, 何珊, 向箭宇, 谢戎 (2018). 利用岗46B/A232重组自交系群体分析叶绿素含量相关QTL. 西南农业学报 31, 2223-2228.
[5] 刘进 (2013). 水稻重要农艺性状QTL分析及叶绿素含量相关基因分子定位. 硕士论文. 沈阳: 沈阳农业大学. pp. 40-54.
[6] 刘进, 王嘉宇, 姜树坤, 徐正进 (2012). 水稻叶绿素含量动态QTL分析. 植物生理学报 48, 577-583.
[7] 刘进, 姚晓云, 范淑秀, 黎毛毛, 郭乃辉, 王鑫瑞, 王嘉宇, 陈温福 (2018). 水稻叶绿素含量和穗部性状的QTL及其相互关系分析. 沈阳农业大学学报 49, 641-648.
[8] 梅银国, 唐志明, 李华军, 李信年, 华国来, 李晓方 (2012). 水稻叶片叶绿素含量与衰老的关系. 湖北农业科学 51, 2177-2179.
[9] 王春华 (2018). 中国粮食安全现状与应对策略分析. 粮食问题研究 (5), 40-42.
[10] 王红梅, 张敏, 陶诗顺 (2008). 水稻叶绿素含量与发根率的关系研究. 安徽农业科学 36, 3265-3269.
[11] 王兰, 黄李超, 代丽萍, 杨窑龙, 徐杰, 冷语佳, 张光恒, 胡江, 朱丽, 高振宇, 董国军, 郭龙彪, 钱前, 曾大力 (2014). 利用日本晴/9311重组自交系群体定位水稻成熟期叶形相关性状QTL. 中国水稻科学 28, 589-597.
[12] 杨凯如, 贾绮玮, 金佳怡, 叶涵斐, 王盛, 陈芊羽, 管易安, 潘晨阳, 辛德东, 方媛, 王跃星, 饶玉春 (2022). 水稻黄绿叶调控基因YGL18的克隆与功能解析. 植物学报 57, 276-287.
[13] 杨树明, 刘关所, 张素华 (2017). 不同生长环境下水稻孕穗期叶绿素QTL定位. 云南大学学报(自然科学版) 39, 684-690.
[14] 姚晓云, 杨平, 黄永萍, 彭志勤, 刘进, 吴延寿, 邹国兴, 尹建华 (2022). 水稻叶绿素含量主效QTL定位. 江西农业学报 34(2), 8-14.
[15] 叶涵斐, 殷文晶, 管易安, 杨凯如, 陈芊羽, 俞淑颖, 朱旭东, 辛德东, 章薇, 王跃星, 饶玉春 (2022). 水稻籽粒维生素E QTL挖掘及候选基因分析. 植物学报 57, 157-170.
[16] 赵凌, 张勇, 魏晓东, 梁文化, 赵春芳, 周丽慧, 姚姝, 王才林, 张亚东 (2022). 利用高密度Bin图谱定位水稻抽穗期剑叶叶绿素含量QTL. 中国农业科学 55, 825-836.
[17] 甄晓宇, 杨坚群, 栗鑫鑫, 刘兆新, 高芳, 赵继浩, 李颖, 钱必长, 李金融, 杨东清, 李向东 (2019). 播种深度对花生生育进程和叶片衰老的影响及其生理机制. 作物学报 45, 1386-1397.
[18] 周纯, 焦然, 胡萍, 林晗, 胡娟, 徐娜, 吴先美, 饶玉春, 王跃星 (2019). 水稻早衰突变体LS-es1的基因定位及候选基因分析. 植物学报 54, 606-619.
[19] 周振翔 (2016). 水稻叶片叶绿素含量对光合生理及产量的影响. 硕士论文. 扬州: 扬州大学. pp. 1-10.
[20] 邹阳 (2020). 水稻MYB转录因子家族成员的鉴定及其抗逆调控机制研究. 硕士论文. 福州: 福建农林大学. pp. 1-7.
[21] 左海龙 (2008). 控制水稻叶片叶绿素含量及其降解相关基因的遗传定位. 博士论文. 上海: 上海师范大学. pp. 28-32.
[22] Dong YJ, Yang ZN, Xu JL, Lin DZ, Sugimoto Y, Luo LJ, Mei HW (2007). Quantitative trait loci for leaf chlorophyll content at two developmental stages of rice (Oryza sativa L.). Commun Biometry Crop Sci 2, 1-7.
[23] Guo MN, Ruan WY, Li CY, Huang FL, Zeng M, Liu YY, Yu YN, Ding XM, Wu YR, Wu ZC, Mao CZ, Yi KK, Wu P, Mo XR (2015). Integrative comparison of the role of the PHOSPHATE RESPONSE 1 subfamily in phosphate signaling and homeostasis in rice. Plant Physiol 168, 1762-1776.
[24] He L, Zhang S, Qiu ZN, Zhao J, Nie WD, Lin HY, Zhu ZG, Zeng DL, Qian Q, Zhu L (2018). FRUCTOKINASE-LIKE PROTEIN 1 interacts with TRXz to regulate chloroplast development in rice. J Integr Plant Biol 60, 94-111.
[25] Huang LC, Dai LP, Wang L, Leng YJ, Yang YL, Xu J, Hu J, Rao YC, Zhang GH, Zhu L, Dong GJ, Guo LB, Qian Q, Zeng DL (2015). Genetic dissection for chlorophyll content of the top three leaves during grain filling in rice (Oryza sativa L.). J Plant Growth Regul 34, 381-391.
[26] Huang YJ, Zhao HX, Gao F, Yao PF, Deng RY, Li CL, Chen H, Wu Q (2018). A R2R3-MYB transcription factor gene, FtMYB13, from Tartary buckwheat improves salt/ drought tolerance in Arabidopsis. Plant Physiol Biochem 132, 238-248.
[27] Jiang GH, Xiang YH, Zhao JY, Yin DD, Zhao XF, Zhu LH, Zhai WX (2014). Regulation of inflorescence branch development in rice through a novel pathway involving the pentatricopeptide repeat protein sped1-D. Genetics 197, 1395-1407.
[28] Jiang SK, Zhang XJ, Xu ZJ, Chen WF (2010). Comparison between QTLs for chlorophyll content and genes controlling chlorophyll biosynthesis and degradation in japonica rice (Oryza sativa L.). Acta Agronom Sin 36, 376-384.
[29] Livak KJ, Schmittgen TD (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2-??CT method. Methods 25, 402-408.
[30] Mae T (1997). Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant Soil 196, 201-210.
[31] McCouch SR, Cho YC, Yano M, Paul E, Blinstrub M (1997). Report on QTL no-menclature. Rice Genet Newsl 14, 11-13.
[32] Xie WB, Feng Q, Yu HH, Huang XH, Zhao Q, Xing YZ, Yu SB, Han B, Zhang QF (2010). Parent-independent genotyping for constructing an ultrahigh-density linkage map based on population sequencing. Proc Natl Acad Sci USA 107, 10578-10583.
[33] Zhang GH, Li SY, Wang L, Ye WJ, Zeng DL, Rao YC, Peng YL, Hu J, Yang YL, Xu J, Ren DY, Gao ZY, Zhu L, Dong GJ, Hu XM, Yan MX, Guo LB, Li CY, Qian Q (2014). LSCHL4 from japonica cultivar, which is allelic to NAL1, increases yield of indica super rice 93-11. Mol Plant 7, 1350-1364.
[34] Zuo HL, Xiao K, Dong YJ, Xu JL, Li ZK, Luo LJ, Mei HW (2007). Molecular detection of quantitative trait loci for leaf chlorophyll content at different growth-stages of rice (Oryza sativa L.). Asian J Plant Sci 6, 518-522.
文章导航

/

674-3466/bottom_cn.htm"-->