植物中松脂醇-落叶松脂素还原酶催化特征研究进展
收稿日期: 2022-07-20
录用日期: 2022-12-13
网络出版日期: 2023-01-10
基金资助
国家自然科学基金(81874335);国家自然科学基金(32170402);国家自然科学基金(31872665);2022重点研发计划中药现代化专项(2022YFC3501700);上海市2023年度科技创新行动计划青年优秀学术带头人项目(23XD1423500);上海市中央引导地方科技发展资金(YDZX20203100002948)
Research Progress on Catalytic Characteristics of Pinoresinol-lariciresinol Reductase in Plants
Received date: 2022-07-20
Accepted date: 2022-12-13
Online published: 2023-01-10
松脂醇-落叶松脂素还原酶(PLR)是植物中木脂素生物合成的关键酶, 能够催化松脂醇转化为落叶松脂素, 并进一步催化落叶松脂素生成开环异落叶松脂素, 且存在底物立体选择性, 是一种NADPH依赖型还原酶。PLR的催化产物位于不同类型8-8′木脂素的源头, 其底物选择性直接决定木脂素的骨架类型, 如呋喃、二苄基丁烷、二苄基丁内酯和芳基四氢萘木脂素。因此, PLR的催化特性和表达特征在植物木脂素组成及其生物活性多样性中发挥重要作用。该文综述了PLR在植物木脂素生物合成中的作用、对映异构体选择性及其催化机制, 以期为进一步研究PLR基因的生物学功能以及催化机制奠定基础, 并为不同类型木脂素的精确生物合成指明方向。
关键词: 松脂醇-落叶松脂素还原酶; 木脂素; 催化特征; 对映体选择性; 催化机制
阴艳红, 陈万生, 肖莹 . 植物中松脂醇-落叶松脂素还原酶催化特征研究进展[J]. 植物学报, 2023 , 58(4) : 656 -667 . DOI: 10.11983/CBB22160
Pinoresinol-lariciresinol reductases (PLRs) are key enzymes involved in the lignan biosynthesis in plants, which convert pinoresinol to lariciresinol and then to secoisolariciresinol. PLRs are NADPH-dependent reductases with substrate stereoselectivity. The catalytic products of PLR are the sources of different types of 8-8′ lignans, and the substrate selectivity directly determines the skeleton types of lignans, such as furano, dibenzylbutane, dibenzylbutyrolactone and aryltetrahydronaphthalene lignans. Therefore, the catalytic and expression characteristics of PLRs play an important role in the composition and biodiversity of lignans in plants. This paper reviewed the research progress on the important role of PLRs in lignans biosynthesis, as well as its enantioselectivity and catalytic mechanism, thus to lay the foundation for further study on the biological function and catalytic mechanism of PLR genes, and point out the direction for the precise biosynthesis of different types of lignans enantiomers through synthetic biology.
[1] | 陈瑞兵 (2018). Dirigent蛋白催化菘蓝有效成分木脂素生物合成的机制研究. 博士论文. 上海: 中国人民解放军海军军医大学. pp. 20-152. |
[2] | 程丽姣, 丁羽佳, 翟永功, 赵长琦 (2006). 植物中新的木脂素类化合物及其生物活性. 国外医药·植物药分册 21(3), 93-100. |
[3] | 刘长军, 侯嵩生 (1997). 抗癌活性物质鬼臼类木脂素的研究进展. 天然产物研究与开发 9(3), 81-89. |
[4] | Allen KL, Tschantz DR, Awad KS, Lynch WP, Delucia AL (2007). A plant lignan, 3′-O-methyl-nordihydroguaiaretic acid, suppresses papillomavirus E6 protein function, stabilizes p53 protein, and induces apoptosis in cervical tumor cells. Mol Carcinog 46, 564-575. |
[5] | Ayella AK, Trick HN, Wang WQ (2007). Enhancing lignan biosynthesis by over-expressing pinoresinol lariciresinol reductase in transgenic wheat. Mol Nutr Food Res 51, 1518-1526. |
[6] | Bayindir ü, Alfermann AW, Fuss E (2008). Hinokinin biosynthesis in Linum corymbulosum Reichenb. Plant J 55, 810-820. |
[7] | Bohlin L, Rosen B (1996). Podophyllotoxin derivatives: drug discovery and development. Drug Discovery Today 1, 343-351. |
[8] | Calado A, Neves PM, Santos T, Ravasco P (2018). The effect of flaxseed in breast cancer: a literature review. Front Nutr 5, 4. |
[9] | Céspedes CL, Avila JG, García AM, Becerra J, Flores C, Aqueveque P, Bittner M, Hoeneisen M, Martinez M, Silva M (2006). Antifungal and antibacterial activities of Araucaria araucana (Mol.) K. Koch heartwood lignans. Z Naturforsch C J Biosci 61, 35-43. |
[10] | Chen X, Chen JF, Feng JX, Wang Y, Li SN, Xiao Y, Diao Y, Zhang L, Chen WS (2021). Tandem UGT71B5s catalyze lignan glycosylation in Isatis indigotica with substrates promiscuity. Front Plant Sci 12, 637695. |
[11] | Chiang NT, Ma LT, Lee YR, Tsao NW, Yang CK, Wang SY, Chu FH (2018). The gene expression and enzymatic activity of pinoresinol-lariciresinol reductase during wood formation in Taiwania cryptomerioides Hayata. Holzforschung 73, 197-208. |
[12] | Corbin C, Drouet S, Markulin L, Auguin D, Lainé é, Davin LB, Cort JR, Lewis NG, Hano C (2018). A genome-wide analysis of the flax (Linum usitatissimum L.) dirigent protein family: from gene identification and evolution to differential regulation. Plant Mol Biol 97, 73-101. |
[13] | Corbin C, Drouet S, Mateljak I, Markulin L, Decourtil C, Renouard S, Lopez T, Doussot J, Lamblin F, Auguin D, Lainé E, Fuss E, Hano C (2017). Functional characterization of the pinoresinol-lariciresinol reductase-2 gene reveals its roles in yatein biosynthesis and flax defense response. Planta 246, 405-420. |
[14] | Cullmann F, Becker H (1999). Lignans from the liverwort Lepicolea ochroleuca. Phytochemistry 52, 1651-1656. |
[15] | Davin LB, Lewis NG (1992). Phenylpropanoid metabolism:biosynthesis of monolignols, lignans and neolignans, lignins and suberins. In: Stafford HA, Ibrahim RK, eds. Phenolic Metabolism in Plants. Boston: Springer. pp. 325-375. |
[16] | Dinkova-Kostova AT, Gang DR, Davin LB, Bedgar DL, Chu A, Lewis NG (1996). (+)-pinoresinol/(+)-lariciresinol reductase from Forsythia intermedia. Protein purification, cDNA cloning, heterologous expression and comparison to isoflavone reductase. J Biol Chem 271, 29473-29482. |
[17] | Favela-Hernández JMJ, García A, Garza-González E, Rivas-Galindo VM, Camacho-Corona MR (2012). Antibacterial and antimycobacterial lignans and flavonoids from Larrea tridentata. Phytother Res 26, 1957-1960. |
[18] | Fujita M, Gang DR, Davin LB, Lewis NG (1999). Recombinant pinoresinol-lariciresinol reductases from western red cedar (Thuja plicata) catalyze opposite enantiospecific conversions. J Biol Chem 274, 618-627. |
[19] | Gordaliza M, García PA, del Corral JMM, Castro MA, Gómez-Zurita MA (2004). Podophyllotoxin: distribution, sources, applications and new cytotoxic derivatives. Toxicon 44, 441-459. |
[20] | Guo R, Lv TM, Shang XY, Yao GD, Lin B, Wang XB, Huang XX, Song SJ (2019). Racemic neolignans from Crataegus pinnatifida: chiral resolution, configurational assignment, and cytotoxic activities against human hepatoma cells. Fitoterapia 137, 104287. |
[21] | Hano C, Corbin C, Drouet S, Quéro A, Rombaut N, Savoire R, Molinié R, Thomasset B, Mesnard F, Lainé E (2017). The lignan (+)-secoisolariciresinol extracted from flax hulls is an effective protectant of linseed oil and its emulsion against oxidative damage. Eur J Lipid Sci Technol 119, 1600219. |
[22] | Hano C, Martin I, Fliniaux O, Legrand B, Gutierrez L, Arroo RRJ, Mesnard F, Lamblin F, Lainé E (2006). Pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol diglucoside accumulation in developing flax (Linum usitatissimum) seeds. Planta 224, 1291-1301. |
[23] | Hemmati S, Schmidt TJ, Fuss E (2007). (+)-pinoresinol/ (-)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. FEBS Lett 581, 603-610. |
[24] | Hemmati S, von Heimendahl CB, Klaes M, Alfermann AW, Schmidt TJ, Fuss E (2010). Pinoresinol-lariciresinol reductases with opposite enantiospecificity determine the enantiomeric composition of lignans in the different organs of Linum usitatissimum L. Planta Med 76, 928-934. |
[25] | Kassuya CAL, Leite DFP, de Melo LV, Rehder VLG, Calixto JB (2005). Anti-inflammatory properties of extracts, fractions and lignans isolated from Phyllanthus amarus. Planta Med 71, 721-726. |
[26] | Kraus C, Spiteller G (1997). Comparison of phenolic compounds from galls and shoots of Picea glauca. Phytochemistry 44, 59-67. |
[27] | Kumar S, Stecher G, Tamura K (2016). MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33, 1870-1874. |
[28] | Kuo HJ, Wei ZY, Lu PC, Huang PL, Lee KT (2014). Bioconversion of pinoresinol into matairesinol by use of recombinant Escherichia coli. Appl Environ Microbiol 80, 2687-2692. |
[29] | Kuo YC, Kuo YH, Lin YL, Tsai WJ (2006). Yatein from Chamaecyparis obtusa suppresses herpes simplex virus type 1 replication in HeLa cells by interruption the immediate-early gene expression. Antiviral Res 70, 112-120. |
[30] | Lau W, Sattely ES (2015). Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349, 1224-1228. |
[31] | Li KM, Dong X, Ma YN, Wu ZH, Yan YM, Cheng YX (2019). Antifungal coumarins and lignans from Artemisia annua. Fitoterapia 134, 323-328. |
[32] | Min T, Kasahara H, Bedgar DL, Youn B, Lawrence PK, Gang DR, Halls SC, Park H, Hilsenbeck JL, Davin LB, Lewis NG, Kang C (2003). Crystal structures of pinoresinol-lariciresinol and phenylcoumaran benzylic ether reductases and their relationship to isoflavone reductases. J Biol Chem 278, 50714-50723. |
[33] | Nakatsubo T, Mizutani M, Suzuki S, Hattori T, Umezawa T (2008). Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J Biol Chem 283, 15550-15557. |
[34] | Rahman MMA, Dewick PM, Jackson DE, Lucas JA (1990). Lignans of Forsythia intermedia. Phytochemistry 29, 1971-1980. |
[35] | Renouard S, Tribalatc MA, Lamblin F, Mongelard G, Fliniaux O, Corbin C, Marosevic D, Pilard S, Demailly H, Gutierrez L, Hano C, Mesnard F, Lainé E (2014). RNAi-mediated pinoresinol lariciresinol reductase gene silencing in flax (Linum usitatissimum L.) seed coat: consequences on lignans and neolignans accumulation. J Plant Physiol 171, 1372-1377. |
[36] | Robert X, Gouet P (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res 42, W320-W324. |
[37] | Scher JM, Zapp J, Becker H (2003). Lignan derivatives from the liverwort Bazzania trilobata. Phytochemistry 62, 769-777. |
[38] | Shiaishi A, Murata J, Matsumoto E, Matsubara S, Ono E, Satake H (2016). De novo transcriptomes of Forsythia koreana using a novel assembly method: insight into tissue- and species-specific expression of lignan biosynthesis-related gene. PLoS One 11, e0164805. |
[39] | Stadler D, Bach T (2008). Concise stereoselective synthesis of (-)-podophyllotoxin by an intermolecular iron(III)- catalyzed Friedel-Crafts alkylation. Angew Chem Int Ed Engl 47, 7557-7559. |
[40] | Suzuki S, Umezawa T, Shimada M (2002). Stereochemical diversity in lignan biosynthesis of Arctium lappa L. Biosci Biotechnol Biochem 66, 1262-1269. |
[41] | Takeda R, Hasegawa J, Shinozaki M (1990). The first isolation of lignans, megacerotonic acid and anthocerotonic acid, from non-vascular plants, anthocerotae (hornworts). Tetrahedron Lett 31, 4159-4162. |
[42] | Teponno RB, Kusari S, Spiteller M (2016). Recent advances in research on lignans and neolignans. Nat Prod Rep 33, 1044-1092. |
[43] | Umezawa T (2003). Diversity in lignan biosynthesis. Phytochem Rev 2, 371-390. |
[44] | Umezawa T, Davin LB, Lewis NG (1991). Formation of lignans (-)-secoisolariciresinol and (-)-matairesinol with Forsythia intermedia cell-free extracts. J Biol Chem 266, 10210-10217. |
[45] | van Fürden B, Humburg A, Fuss E (2005). Influence of methyl jasmonate on podophyllotoxinand 6-methoxypodophyllotoxin accumulation in Linum album cell suspension cultures. Plant Cell Rep 24, 312-317. |
[46] | von Heimendahl CBI, Sch?fer KM, Eklund P, Sj?holm R, Schmidt TJ, Fuss E (2005). Pinoresinol-lariciresinol reductases with different stereospecificity from Linum album and Linum usitatissimum. Phytochemistry 66, 1254-1263. |
[47] | Wada H, Kido T, Tanaka N, Murakami T, Saiki Y, Chen CM (1992). Chemical and chemotaxonomical studies of ferns. LXXXI. Characteristic lignans of Blechnaceous ferns. Chem Pharm Bull 40, 2099-2101. |
[48] | Wankhede DP, Biswas DK, Rajkumar S, Sinha AK (2013). Expressed sequence tags and molecular cloning and characterization of gene encoding pinoresinol/lariciresinol reductase from Podophyllum hexandrum. Protoplasma 250, 1239-1249. |
[49] | Wu YL, Xing DW, Ma GL, Dai XL, Gao LP, Xia T (2019). A variable loop involved in the substrate selectivity of pinoresinol/lariciresinol reductase from Camellia sinensis. Phytochemistry 162, 1-9. |
[50] | Xiao Y, Ji Q, Gao SH, Tan HX, Chen RB, Li Q, Chen JF, Yang YB, Zhang L, Wang ZT, Chen WS, Hu ZB (2015). Combined transcriptome and metabolite profiling reveals that IiPLR1 plays an important role in lariciresinol accumulation in Isatis indigotica. J Exp Bot 66, 6259-6271. |
[51] | Xiao Y, Shao K, Zhou JW, Wang L, Ma XQ, Wu D, Yang YB, Chen JF, Feng JX, Qiu S, Lv ZY, Zhang L, Zhang P, Chen WS (2021). Structure-based engineering of substrate specificity for pinoresinol-lariciresinol reductases. Nat Commun 12, 2828. |
[52] | Zheng CJ, Zhang XW, Han T, Jiang YP, Tang JY, Br?mme D, Qin LP (2014). Anti-inflammatory and anti-osteoporotic lignans from Vitex negundo seeds. Fitoterapia 93, 31-38. |
[53] | Zhou L, Yao GD, Lu LW, Song XY, Lin B, Wang XB, Huang XX, Song SJ (2018). Neolignans from red raspberry (Rubus idaeus L.) exhibit enantioselective neuroprotective effects against H2O2-induced oxidative injury in SH-SY5Y cells. J Agric Food Chem 66, 11390-11397. |
/
〈 | 〉 |