专题论坛

种子际微生物研究展望

展开
  • 1西北工业大学生态环境学院, 西安 710012
    2中国农业大学农学院, 北京 100193

收稿日期: 2022-01-01

  录用日期: 2022-08-25

  网络出版日期: 2022-08-30

基金资助

国家自然科学基金(31872804);中央高校基本科研业务费(22GH0306);中央高校基本科研业务费(D5000230089)

Research Progress of Spermosphere Microorganisms

Expand
  • 1College of Ecological and Environmental, Northwestern Polytechnical University, Xi’an 710012, China
    2College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China

Received date: 2022-01-01

  Accepted date: 2022-08-25

  Online published: 2022-08-30

摘要

种子际是围绕在种子表面, 受到种子萌发影响而使微生物活性增强的狭窄土壤区域。萌发期间的种子和微生物相互影响, 对种子萌发和随后的幼苗生长具有促进或抑制作用; 同时也通过垂直传播参与植物根际和叶际微生物群落构建, 影响植物后续发育及生物/非生物胁迫响应。尽管种子际对于植物生长发育影响很大, 但由于种子萌发持续时间短、种子际的空间范围小且微生物量较小, 种子际研究要比根际和叶际更为复杂。通过基因组学和多组学联合分析等方法对种子际微生物群落组成进行深入探究, 有助于理解植物与土壤生态系统的相互作用和生态过程。该文综述了种子际微生物对种子生物学的影响、种子际微生物与根际和叶际微生物的关系以及相关研究方法, 并展望了未来的研究方向。

本文引用格式

任晓童, 张冉冉, 魏绍巍, 罗晓峰, 徐佳慧, 舒凯 . 种子际微生物研究展望[J]. 植物学报, 2023 , 58(3) : 499 -509 . DOI: 10.11983/CBB22001

Abstract

The spermosphere is a narrow area of soil surrounding the seed surface where microbial activity is enhanced by seed germination processes. Interaction between seeds and microorganisms promotes or inhibits seed germination and subsequent seedling establishment, and also participates in plant rhizosphere and phyllosphere microbial community building through vertical dispersal, and finally influences subsequent plant development and biotic/abiotic stress response. Although the spermosphere has a great influence on plant growth and development, it is more complex to study than rhizosphere and phyllosphere due to the short duration of seed germination, the small spatial extent of the spermosphere, and the small amount of microorganisms involved. To explore the composition of spermosphere microbial community by genomic analysis and multi-omics joint analysis, will facilitate understanding the interactions and ecological processes between plants and soil ecosystems. In this paper, we review the influence of spermosphere microorganisms on the biological processes of seed germination, the comparative meta-genomics of spermosphere with rhizosphere and phyllosphere, and provide an outlook on future research.

参考文献

[1] 柳旭 (2018). 植物根际促生细菌与种子引发技术对老化种子萌发和幼苗生长的影响. 硕士论文. 杨凌: 西北农林科技大学. pp. 18-22.
[2] 王孝林, 王二涛 (2019). 根际微生物促进水稻氮利用的机制. 植物学报 54, 285-287.
[3] Ab Rahman SFS, Singh E, Pieterse CMJ, Schenk PM (2018). Emerging microbial biocontrol strategies for plant pathogens. Plant Sci 267, 102-111.
[4] Abdelfattah A, Wisniewski M, Schena L, Tack AJM (2021). Experimental evidence of microbial inheritance in plants and transmission routes from seed to phyllosphere and root. Environ Microbiol 23, 2199-2214.
[5] Abram F (2015). Systems-based approaches to unravel multi-species microbial community functioning. Comput Struct Biotechnol J 13, 24-32.
[6] Adam E, Bernhart M, Müller H, Winkler J, Berg G (2018). The Cucurbita pepo seed microbiome: genotype-specific composition and implications for breeding. Plant Soil 422, 35-49.
[7] Ahmad F, Husain FM, Ahmad I (2011). Rhizosphere and root colonization by bacterial inoculants and their monitoring methods:a critical area in PGPR research. In: Ahmad I, Ahmad F, Pichtel J, eds. Microbes and Microbial Technology: Agricultural and Environmental Applications. New York: Springer. pp. 363-391.
[8] Andrews JH, Harris RF (2000). The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38, 145-180.
[9] Aziz U, Rehmani MS, Wang L, Luo XF, Xian BS, Wei SW, Wang GD, Shu K (2021). Toward a molecular understanding of rhizosphere, phyllosphere, and spermosphere interactions in plant growth and stress response. Crit Rev Plant Sci 40, 479-500.
[10] Bai Y, Müller DB, Srinivas G, Garrido-Oter R, Potthoff E, Rott M, Dombrowski N, Münch PC, Spaepen S, Remus-Emsermann M, Hüttel B, McHardy AC, Vorholt JA, Schulze-Lefert P (2015). Functional overlap of the Arabidopsis leaf and root microbiota. Nature 528, 364-369.
[11] Behjati S, Tarpey PS (2013). What is next generation sequencing? Arch Dis Child Educ Pract Ed 98, 236-238.
[12] Bodenhausen N, Horton MW, Bergelson J (2013). Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8, e56329.
[13] Bulgarelli D, Schlaeppi K, Spaepen S, Schulze-Lefert P (2013). Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64, 807-838.
[14] Busby PE, Soman C, Wagner MR, Friesen ML, Kremer J, Bennett A, Morsy M, Eisen JA, Leach JE, Dangl JL (2017). Research priorities for harnessing plant microbiomes in sustainable agriculture. PLoS Biol 15, e2001793.
[15] Buyer JS, Roberts DP, Russek-Cohen E (1999). Microbial community structure and function in the spermosphere as affected by soil and seed type. Can J Microbiol 45, 138-144.
[16] Chahtane H, Füller TN, Allard PM, Marcourt L, Queiroz EF, Shanmugabalaji V, Falquet J, Wolfender JL, Lopez- Molina L (2018). The plant pathogen Pseudomonas aeruginosa triggers a DELLA-dependent seed germination arrest in Arabidopsis. eLife 7, e37082.
[17] Chanratana M, Han GH, Joe MM, Choudhury AR, Sundaram S, Halim A, Sa T (2018). Evaluation of chitosan and alginate immobilized Methylobacterium oryzae CBMB20 on tomato plant growth. Arch Agron Soil Sci 64, 1489-1502.
[18] Chee-Sanford JC, Williams II MM, Davis AS, Sims GK (2006). Do microorganisms influence seed-bank dynamics? Weed Sci 54, 575-587.
[19] da Costa DS, Bonassa N, da Luz Coelho Novembre AD (2013). Incidence of storage fungi and hydropriming on soybean seeds. J Seed Sci 35, 35-41.
[20] Dai Y, Li XY, Wang Y, Li CX, He Y, Lin HH, Wang T, Ma XR (2020). The differences and overlaps in the seed-resident microbiome of four Leguminous and three Gramineous forages. Microb Biotechnol 13, 1461-1476.
[21] Dakora FD, Phillips DA (2002). Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245, 35-47.
[22] de Vries FT, Griffiths RI, Knight CG, Nicolitch O, Williams A (2020). Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 270-274.
[23] Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010). Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157, 361-379.
[24] dos Santos RM, Escobar Diaz PA, Bentes Lobo LL, Rigobelo EC (2020). Use of plant growth-promoting rhizobacteria in maize and sugarcane: characteristics and applications. Front Sustain Food Syst 4, 136.
[25] Finkelstein R, Reeves W, Ariizumi T, Steber C (2008). Molecular aspects of seed dormancy. Annu Rev Plant Biol 59, 387-415.
[26] Gerna D, Roach T, Mitter B, St?ggl W, Kranner I (2020). Hydrogen peroxide metabolism in interkingdom interaction between bacteria and wheat seeds and seedlings. Mol Plant Microbe Interact 33, 336-348.
[27] Gopal M, Gupta A (2016). Microbiome selection could spur next-generation plant breeding strategies. Front Microbiol 7, 1971.
[28] Green SJ, Inbar E, Michel FC Jr, Hadar Y, Minz D (2006). Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72, 3975-3983.
[29] Griffiths BS, Díaz-Ravi?a M, Ritz K, McNicol JW, Ebblewhite N, B??th E (1997). Community DNA hybridisation and %G+C profiles of microbial communities from heavy metal polluted soils. FEMS Microbiol Ecol 24, 103-112.
[30] Gundel PE, Rudgers JA, Ghersa CM (2011). Incorporating the process of vertical transmission into understanding of host-symbiont dynamics. Oikos 120, 1121-1128.
[31] Haack SK, Garchow H, Odelson DA, Forney LJ, Klug MJ (1994). Accuracy, reproducibility, and interpretation of fatty acid methyl ester profiles of model bacterial communities. Appl Environ Microbiol 60, 2483-2493.
[32] Hardoim PR, van Overbeek LS, Berg G, Pirttil? AM, Compant S, Campisano A, D?ring M, Sessitsch A (2015). The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79, 293-320.
[33] Hassani MA, Durán P, Hacquard S (2018). Microbial interactions within the plant holobiont. Microbiome 6, 58.
[34] Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60, 579-598.
[35] Hiltner L (1904). Uber neuere erfahrungen und probleme auf dem gebiet der bodenbakteriologie und unter besonderer berucksichtigung der grundungung and brache. Arb Dtsch Landwirtsch Ges 98, 59-78.
[36] Hirsch PR, Mauchline TH, Clark IM (2010). Culture-independent molecular techniques for soil microbial ecology. Soil Biol Biochem 42, 878-887.
[37] Jackson EF, Echlin HL, Jackson CR (2006). Changes in the phyllosphere community of the resurrection fern, Polypodium polypodioides, associated with rainfall and wetting. FEMS Microbiol Ecol 58, 236-246.
[38] Janssen PH (2006). Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol 72, 1719-1728.
[39] Johnston-Monje D, Gutiérrez JP, Lopez-Lavalle LAB (2021). Seed-transmitted bacteria and fungi dominate juvenile plant microbiomes. Front Microbiol 12, 737616.
[40] Kageyama K, Nelson EB (2003). Differential inactivation of seed exudate stimulation of Pythium ultimum sporangium germination by Enterobacter cloacae influences biological control efficacy on different plant species. Appl Environ Microbiol 69, 1114-1120.
[41] Kalia A, Sharma SP, Devi S (2020). Effect of surface microbiome and osmo-conditioning on restoration of storage-induced losses of seed viability in muskmelon (Cucumis melo L.). J Agric Sci Technol 22, 221-233.
[42] Khan N, Bano A, Ali S, Babar A (2020). Crosstalk amongst phytohormones from planta and PGPR under biotic and abiotic stresses. Plant Growth Regul 90, 189-203.
[43] Konstantinidis KT, Ramette A, Tiedje JM (2006). The bacterial species definition in the genomic era. Philos Trans Roy Soc B Biol Sci 361, 1929-1940.
[44] Korir H, Mungai NW, Thuita M, Hamba Y, Masso C (2017). Co-inoculation effect of rhizobia and plant growth promoting rhizobacteria on common bean growth in a low phosphorus soil. Front Plant Sci 8, 141.
[45] Last FT (1955). Seasonal incidence of Sporobolomyces on cereal leaves. Trans Br Mycol Soc 38, 221-239.
[46] Lemanceau P, Barret M, Mazurier S, Mondy S, Pivato B, Fort T, Vacher C (2017). Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. Adv Bot Res 82, 101-133.
[47] Lin H, Liu CJ, Li B, Dong YB (2021). Trifolium repens L. regulated phytoremediation of heavy metal contaminated soil by promoting soil enzyme activities and beneficial rhizosphere associated microorganisms. J Hazard Mater 402, 123829.
[48] Lopez-Velasco G, Carder PA, Welbaum GE, Ponder MA (2013). Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol Lett 346, 146-154.
[49] Macnaughton SJ, Booth T, Embley TM, O’Donnell AG (1996). Physical stabilization and confocal microscopy of bacteria on roots using 16S rRNA targeted, fluorescent- labeled oligonucleotide probes. J Microbiol Methods 26, 279-285.
[50] Malfanova N, Kamilova F, Validov S, Shcherbakov A, Chebotar V, Tikhonovich I, Lugtenberg B (2011). Characterization of Bacillus subtilis HC8, a novel plant-beneficial endophytic strain from giant hogweed. Microb Biotechnol 4, 523-532.
[51] Marschner P, Crowley D, Rengel Z (2011). Rhizosphere interactions between microorganisms and plants govern iron and phosphorus acquisition along the root axis-model and research methods. Soil Biol Biochem 43, 883-894.
[52] Marsh TL (1999). Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr Opin Microbiol 2, 323-327.
[53] Martinez-Rodriguez A, Macedo-Raygoza G, Huerta-Robles AX, Reyes-Sepulveda I, Lozano-Lopez J, García- Ochoa EY, Fierro-Kong L, Medeiros MHG, di Mascio P, White Jr JF, Beltran-Garcia MJ (2019). Agave seed endophytes:ecology and impacts on root architecture, nutrient acquisition, and cold stress tolerance. In: Verma SK, White Jr JF, eds. Seed Endophytes: Biology and Biotechnology. Cham: Springer. pp. 139-170.
[54] Mastouri F, Bj?rkman T, Harman GE (2010). Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings. Phytopathology 100, 1213-1221.
[55] Mühling M, Woolven-Allen J, Murrell JC, Joint I (2008). Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J 2, 379-392.
[56] Nelson EB (2004). Microbial dynamics and interactions in the spermosphere. Annu Rev Phytopathol 42, 271-309.
[57] Nelson EB (2018). The seed microbiome: origins, interactions, and impacts. Plant Soil 422, 7-34.
[58] Noman M, Ahmed T, Ijaz U, Shahid M, Azizullah, Li DY, Manzoor I, Song FM (2021). Plant-microbiome crosstalk: dawning from composition and assembly of microbial community to improvement of disease resilience in plants. Int J Mol Sci 22, 6852.
[59] Nusslein K, Tiedje JM (1999). Soil bacterial community shift correlated with change from forest to pasture vegetation in a tropical soil. Appl Environ Microbiol 65, 3622-3626.
[60] Ofek M, Hadar Y, Minz D (2011). Colonization of cucumber seeds by bacteria during germination. Environ Microbiol 13, 2794-2807.
[61] Oracz K, Karpiński S (2016). Phytohormones signaling pathways and ROS involvement in seed germination. Front Plant Sci 7, 864.
[62] Pal G, Kumar K, Verma A, Verma SK (2022). Seed inhabiting bacterial endophytes of maize promote seedling establishment and provide protection against fungal disease. Microbiol Res 255, 126926.
[63] Puente ME, Li CY, Bashan Y (2009). Endophytic bacteria in cacti seeds can improve the development of cactus seedlings. Environ Exp Bot 66, 402-408.
[64] Ramadurai S, Moorthy A, Balasundaram U (2021). Metagenomic approach in relation to plant-microbe and microbe-microbe interactions. In: Pudake RN, Sahu BB, Kumari M, Sharma AK, eds. Omics Science for Rhizosphere Biology. Singapore: Springer. pp. 21-40.
[65] Ravichandran A, Thangavel K, Rangasamy A (2021). Maize spermosphere bacterial endophytes and their biotic and abiotic stress tolerance traits. Pharma Innovation 10, 47-53.
[66] Reinhold-Hurek B, Bünger W, Burbano CS, Sabale M, Hurek T (2015). Roots shaping their microbiome: global hotspots for microbial activity. Annu Rev Phytopathol 53, 403-424.
[67] Remus-Emsermann MNP, Schlechter RO (2018). Phyllosphere microbiology: at the interface between microbial individuals and the plant host. New Phytol 218, 1327-1333.
[68] Ritpitakphong U, Falquet L, Vimoltust A, Berger A, Metraux JP, L'Haridon F (2016). The microbiome of the leaf surface of Arabidopsis protects against a fungal pathogen. New Phytol 210, 1033-1043.
[69] Rudi K, Zimonja M, Trosvik P, Naes T (2007). Use of multivariate statistics for 16S rRNA gene analysis of microbial communities. Int J Food Microbiol 120, 95-99.
[70] Ruinen J (1956). Occurrence of beijerinckia species in the ‘phyllosphere’. Nature 177, 220-221.
[71] Sahadevan N, Radhakrishnan EK, Mathew J (2019). Mechanism of interaction of endophytic microbes with plants. In: Verma SK, White JF Jr, eds. Seed Endophytes: Biology and Biotechnology. Cham: Springer. pp. 237-257.
[72] Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015). Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous cropping. Proc Natl Acad Sci USA 112, E5013-E5020.
[73] Schiltz S, Gaillard I, Pawlicki-Jullian N, Thiombiano B, Mesnard F, Gontier E (2015). A review: what is the spermosphere and how can it be studied? J Appl Microbiol 119, 1467-1481.
[74] Shade A, Jacques MA, Barret M (2017). Ecological patterns of seed microbiome diversity, transmission, and assembly. Curr Opin Microbiol 37, 15-22.
[75] Shakir S, Zaidi SSEA, de Vries FT, Mansoor S (2021). Plant genetic networks shaping phyllosphere microbial community. Trends Genet 37, 306-316.
[76] Short GE, Lacy ML (1976). Carbohydrate exudation from pea seeds: effect of cultivar, seed age, seed color, and temperature. Phytopathology 66, 182-187.
[77] Shu K, Liu XD, Xie Q, He ZH (2016). Two faces of one seed: hormonal regulation of dormancy and germination. Mol Plant 9, 34-45.
[78] Shu K, Meng YJ, Shuai HW, Liu WG, Du JB, Liu J, Yang WY (2015). Dormancy and germination: how does the crop seed decide? Plant Biol 17, 1104-1112.
[79] Singh JS, Pandey VC, Singh DP (2011). Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140, 339-353.
[80] Slykhuis JT (1947). Studies on Fusarium culmorum blight of crested wheat and brome grass seedlings. Can J Res 25c, 155-180.
[81] Stringlis IA, de Jonge R, Pieterse CMJ (2019). The age of coumarins in plant-microbe interactions. Plant Cell Physiol 60, 1405-1419.
[82] Thevenot C, Thomas F (1983). Physiology of apple-embryo cotyledons in relation to dormancy. 1. Influence of germination conditions on their morphological development. Bull Soc Bot Fr Actual Bot 130, 89-100.
[83] Uhlik O, Leewis MC, Strejcek M, Musilova L, Mackova M, Leigh MB, Macek T (2013). Stable isotope probing in the metagenomics era: a bridge towards improved bioremediation. Biotechnol Adv 31, 154-165.
[84] van de Peer Y, Chapelle S, De Wachter R (1996). A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res 24, 3381-3391.
[85] van Dijk EL, Jaszczyszyn Y, Naquin D, Thermes C (2018). The third revolution in sequencing technology. Trends Genet 34, 666-681.
[86] Vega A, Antonio O'Brien J, Gutiérrez RA (2019). Nitrate and hormonal signaling crosstalk for plant growth and development. Curr Opin Plant Biol 52, 155-163.
[87] Verona O (1963). Interaction between germinating seeds and telluric microorganisms. Ann Inst Pasteur 105, 75-98.
[88] Vorholt JA (2012). Microbial life in the phyllosphere. Nat Rev Microbiol 10, 828-840.
[89] Walker R, Powell AA, Seddon B (1998). Bacillus isolates from the spermosphere of peas and dwarf French beans with antifungal activity against Botrytis cinerea and Pythium species. J Appl Microbiol 84, 791-801.
[90] Walker TS, Bais HP, Grotewold E, Vivanco JM (2003). Root exudation and rhizosphere biology. Plant Physiol 132, 44-51.
[91] Watson AG (1966). Seasonal variation in the inoculum potentials of spermosphere fungi. New Z J Agric Res 9, 956-963.
[92] Weitbrecht K, Müller K, Leubner-Metzger G (2011). First off the mark: early seed germination. J Exp Bot 62, 3289-3309.
[93] Witzel K, Neugart S, Ruppel S, Schreiner M, Wiesner M, Baldermann S (2015). Recent progress in the use of 'omics technologies in brassicaceous vegetables. Front Plant Sci 6, 244.
[94] Xu Y, Zhang D, Dai LX, Ding H, Ci DW, Qin FF, Zhang GC, Zhang ZM (2020). Influence of salt stress on growth of spermosphere bacterial communities in different peanut (Arachis hypogaea L.) cultivars. Int J Mol Sci 21, 2131.
[95] Yeoh YK, Dennis PG, Paungfoo-Lonhienne C, Weber L, Brackin R, Ragan MA, Schmidt S, Hugenholtz P (2017). Evolutionary conservation of a core root microbiome across plant phyla along a tropical soil chronosequence. Nat Commun 8, 215.
文章导航

/