[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
专题论坛

植物胞吞和胞吐的耦合调控

展开
  • 1兰州大学生命科学学院, 细胞活动与逆境适应教育部重点实验室, 兰州 730000
    2绍兴文理学院生命科学学院, 绍兴 312000
jxshou@126.com
* E-mail: wangc@lzu.edu.cn;
第一联系人: 共同第一作者

收稿日期: 2021-12-19

  录用日期: 2022-02-07

  网络出版日期: 2022-02-07

基金资助

国家自然科学基金(31801193);兰州大学“细胞活动与逆境适应教育部重点实验室开放课题”基金(lzujbky-2020-kb05)

Coupling Regulation of Endocytosis and Exocytosis in Plants

Expand
  • 1Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
    2College of Life Sciences, Shaoxing University, Shaoxing 312000, China
First author contact: These authors contributed equally to this paper

Received date: 2021-12-19

  Accepted date: 2022-02-07

  Online published: 2022-02-07

摘要

真核细胞通过胞吞和胞吐作用将大分子和颗粒性物质运出或运送至质膜, 其中包括一些具有重要生物学功能的蛋白质。胞吞和胞吐途径之间的耦合对维持质膜的完整性以及调控质膜蛋白的丰度和活性至关重要。动物中, 突触小泡的胞吞和胞吐在时空上紧密耦合已被证明是持续神经传递的必要条件。近年来, 随着对植物囊泡运输的深入研究, 越来越多的证据表明, 植物细胞的胞吞和胞吐间同样存在耦合调控, 且在植物生长发育和对外界环境的响应中扮演重要角色。该文综述了植物协同调控胞吞和胞吐的生理学意义, 并结合网格蛋白介导囊泡运输的最新研究进展探讨了其可能的耦合机制。

关键词: 网格蛋白; 耦合; 胞吞; 胞吐

本文引用格式

严旭, 徐梅, 王玉同, 潘伟槐, 潘建伟, 寿建昕, 王超 . 植物胞吞和胞吐的耦合调控[J]. 植物学报, 2022 , 57(3) : 375 -387 . DOI: 10.11983/CBB21223

Abstract

Eukaryotic cells transport macromolecules and particulate matter away or to the plasma membrane through endocytosis and exocytosis, including certain proteins with important biological functions. The coupling between these two vesicle transport pathways is essential for maintaining the integrity of the plasma membrane as well as regulating the abundance and activity of plasma membrane proteins. In animals, the spatiotemporal coupling of synaptic vesicle endocytosis and exocytosis has been shown to be necessary for the continuation of neurotransmission. In recent years, increasing evidences on the plant vesicle trafficking show the existence of a coupling regulation between endocytosis and exocytosis, which plays an important role in plant growth and development as well as responses to the environment. Here we summarize the physiological significance of plant cooperative regulation of endocytosis and exocytosis, and discuss the potential coupling mechanisms based on the recent progress in the study of clathrin-mediated vesicle trafficking.

[an error occurred while processing this directive]

参考文献

[1] 鲍永美, 王州飞, 张红生 (2005). 植物SNARE蛋白的结构与功能. 植物学报 22, 715-722.
[2] 崔亚宁, 钱虹萍, 赵艳霞, 李晓娟 (2020). 模式识别受体的胞内转运及其在植物免疫中的作用. 植物学报 55, 329-339.
[3] 李彤辉, 刘晓楠, 徐静, 李师鹏, 蒋苏 (2019). 胞泌复合体在植物中的功能研究进展. 植物学报 54, 642-651.
[4] 林雨晴, 齐艳华 (2021). 生长素输出载体PIN家族研究进展. 植物学报 56, 151-165.
[5] Abas L, Benjamins R, Malenica N, Paciorek T, Wišniewska J, Moulinier-Anzola JC, Sieberer T, Friml J, Luschnig C (2006). Intracellular trafficking and proteolysis of the Arabidopsis auxin-efflux facilitator PIN2 are involved in root gravitropism. Nat Cell Biol 8, 249-256.
[6] Adamowski M, Narasimhan M, Kania U, Glanc M, De Jaeger G, Friml J (2018). A functional study of AUXILIN- LIKE1 and 2, two putative clathrin uncoating factors in Arabidopsis. Plant Cell 30, 700-716.
[7] Aerts N, Pereira Mendes M, Van Wees SCM (2021). Multiple levels of crosstalk in hormone networks regulating plant defense. Plant J 105, 489-504.
[8] Alabi AA, Tsien RW (2013). Perspectives on kiss-and-run: role in exocytosis, endocytosis, and neurotransmission. Annu Rev Physiol 75, 393-422.
[9] An QL, Hückelhoven R, Kogel KH, van Bel AJ (2006). Multivesicular bodies participate in a cell wall-associated defence response in barley leaves attacked by the pathogenic powdery mildew fungus. Cell Microbiol 8, 1009- 1019.
[10] Baluska F, Samaj J, Hlavacka A, Kendrick-Jones J, Volkmann D (2004). Actin-dependent fluid-phase endocytosis in inner cortex cells of maize root apices. J Exp Bot 55, 463-473.
[11] Bashline L, Lei L, Li SD, Gu Y (2014). Cell wall, cytoskeleton, and cell expansion in higher plants. Mol Plant 7, 586- 600.
[12] Bassham DC, Brandizzi F, Otegui MS, Sanderfoot AA (2008). The secretory system of Arabidopsis. Arabidopsis Book 6, e0116.
[13] Beck M, Zhou J, Faulkner C, MacLean D, Robatzek S (2012). Spatio-temporal cellular dynamics of the Arabi-dopsis flagellin receptor reveal activation status-dependent endosomal sorting. Plant Cell 24, 4205-4219.
[14] Bielach A, Hrtyan M, Tognetti VB (2017). Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18, 1427.
[15] Blatt MR (2000). Cellular signaling and volume control in stomatal movements in plants. Annu Rev Cell Dev Biol 16, 221-241.
[16] Bloch D, Pleskot R, Pejchar P, Potocký M, Trpkošová P, Cwiklik L, Vukašinović N, Sternberg H, Yalovsky S, Žárský V (2016). Exocyst SEC3 and phosphoinositides define sites of exocytosis in pollen tube initiation and growth. Plant Physiol 172, 980-1002.
[17] Boller T, Felix G (2009). A renaissance of elicitors: percep- tion of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60, 379-406.
[18] Boutté Y, Frescatada-Rosa M, Men S, Chow CM, Ebine K, Gustavsson A, Johansson L, Ueda T, Moore I, Jür-gens G, Grebe M (2010). Endocytosis restricts Arabi-dopsis KNOLLE syntaxin to the cell division plane during late cytokinesis. EMBO J 29, 546-558.
[19] Cai Y, Jia TR, Lam SK, Ding Y, Gao CJ, San MWY, Pimpl P, Jiang LW (2011). Multiple cytosolic and transmembrane determinants are required for the trafficking of SCAMP1 via an ER-Golgi-TGN-PM pathway. Plant J 65, 882- 896.
[20] Cameron C, Geitmann A (2018). Cell mechanics of pollen tube growth. Curr Opin Genet Dev 51, 11-17.
[21] Campanoni P, Blatt MR (2007). Membrane trafficking and polar growth in root hairs and pollen tubes. J Exp Bot 58, 65-74.
[22] Cao WL, Yu Y, Li MY, Luo J, Wang RS, Tang HJ, Huang J, Wang JF, Zhang HS, Bao YM (2019). OsSYP121 ac-cumulates at fungal penetration sites and mediates host resistance to rice blast. Plant Physiol 179,1330-1342.
[23] Chandler JW, Werr W (2015). Cytokinin-auxin crosstalk in cell type specification. Trends Plant Sci 20, 291-300.
[24] Cheung AY, Wu HM (2008). Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59, 547-572.
[25] Crowell EF, Bischoff V, Desprez T, Rolland A, Stierhof YD, Schumacher K, Gonneau M, Höfte H, Vernhettes S (2009). Pausing of Golgi bodies on microtubules regulates secretion of cellulose synthase complexes in Arabidopsis. Plant Cell 21,1141-1154.
[26] Cui Y, Cao WH, He YL, Zhao Q, Wakazaki M, Zhuang XH, Gao JY, Zeng YL, Gao CJ, Ding Y, Wong HY, Wong WS, Lam HK, Wang PF, Ueda T, Rojas-Pierce M, Toyooka K, Kang BH, Jiang LW (2019). A whole-cell electron tomography model of vacuole biogenesis in Arabidopsis root cells. Nat Plants 5, 95-105.
[27] Cutler JM, Rains DW, Loomis RS (1977). The importance of cell size in the water relations of plants. Physiol Plant 40, 255-260.
[28] Deng SR, Sun J, Zhao R, Ding MQ, Zhang YN, Sun YL, Wang W, Tan YQ, Liu DD, Ma XJ, Hou PC, Wang MJ, Lu CF, Shen X, Chen SL (2015). Populus euphratica APYRASE2 enhances cold tolerance by modulating vesicular trafficking and extracellular ATP in Arabidopsis plants. Plant Physiol 169, 530-548.
[29] Derksen J, Rutten T, Lichtscheidl IK, de Win AHN, Pierson ES, Rongen G (1995). Quantitative analysis of the distribution of organelles in tobacco pollen tubes: implications for exocytosis and endocytosis. Protoplasma 188, 267-276.
[30] Dhonukshe P, Aniento F, Hwang I, Robinson DG, Mravec J, Stierhof YD, Friml J (2007). Clathrin-mediated constitutive endocytosis of PIN auxin efflux carriers in Arabidopsis. Curr Biol 17, 520-527.
[31] Dhonukshe P, Baluška F, Schlicht M, Hlavacka A, Šamaj J, Friml J, Gadella TW Jr (2006). Endocytosis of cell surface material mediates cell plate formation during plant cytokinesis. Dev Cell 10, 137-150.
[32] Du YL, Tejos R, Beck M, Himschoot E, Li HJ, Robatzek S, Vanneste S, Friml J (2013). Salicylic acid interferes with clathrin-mediated endocytic protein trafficking. Proc Natl Acad Sci USA 110, 7946-7951.
[33] Eisenach C, Chen ZH, Grefen C, Blatt MR (2012). The trafficking protein SYP121 of Arabidopsis connects programmed stomatal closure and K+ channel activity with vegetative growth. Plant J 69, 241-251.
[34] Ekanayake G, LaMontagne ED, Heese A (2019). Never walk alone: clathrin-coated vesicle (CCV) components in plant immunity. Annu Rev Phytopathol 57, 387-409.
[35] Fowke L, Dibbayawan T, Schwartz O, Harper J, Overall R (1999). Combined immunofluorescence and field emis-sion scanning electron microscope study of plasma mem-brane-associated organelles in highly vacuolated suspensor cells of white spruce somatic embryos. Cell Biol Int 23, 389-397.
[36] Fujimoto M, Ebine K, Nishimura K, Tsutsumi N, Ueda T (2020). Longin R-SNARE is retrieved from the plasma membrane by ANTH domain-containing proteins in Arabidopsis. Proc Natl Acad Sci USA 117, 25150-25158.
[37] Gadeyne A, Sánchez-Rodríguez C, Vanneste S, Di Rubbo S, Zauber H, Vanneste K, Van Leene J, De Winne N, Eeckhout D, Persiau G, Van De Slijke E, Cannoot B, Vercruysse L, Mayers JR, Adamowski M, Kania U, Ehrlich M, Schweighofer A, Ketelaar T, Maere S, Bednarek SY, Friml J, Gevaert K, Witters E, Russinova E, Persson S, De Jaeger G, Van Damme D (2014). The TPLATE adaptor complex drives clathrin-mediated endocytosis in plants. Cell 156, 691-704.
[38] Galvan-Ampudia CS, Julkowska MM, Darwish E, Gan-dullo J, Korver RA, Brunoud G, Haring MA, Munnik T, Vernoux T, Testerink C (2013). Halotropism is a re-sponse of plant roots to avoid a saline environment. Curr Biol 23, 2044-2050.
[39] Gendre D, McFarlane HE, Johnson E, Mouille G, Sjödin A, Oh J, Levesque-Tremblay G, Watanabe Y, Samuels L, Bhalerao RP (2013). Trans-Golgi network localized ECHIDNA/Ypt interacting protein complex is required for the secretion of cell wall polysaccharides in Arabidopsis. Plant Cell 25, 2633-2646.
[40] Gendre D, Oh J, Boutté Y, Best JG, Samuels L, Nilsson R, Uemura T, Marchant A, Bennett MJ, Grebe M, Bhalerao RP (2011). Conserved Arabidopsis ECHIDNA protein mediates trans-Golgi-network trafficking and cell elongation. Proc Natl Acad Sci USA 108, 8048-8053.
[41] Gradmann D, Robinson DG (1989). Does turgor prevent endocytosis in plant cells? Plant Cell Environ 12, 151-154.
[42] Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003). Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13,1378-1387.
[43] Gutkowska M, Wnuk M, Nowakowska J, Lichocka M, Stronkowski MM, Swiezewska E (2015). Rab geranyl-geranyl transferase β subunit is essential for male fertility and tip growth in Arabidopsis. J Exp Bot 66, 213-224.
[44] Hachez C, Besserer A, Chevalier AS, Chaumont F (2013). Insights into plant plasma membrane aquaporin trafficking. Trends Plant Sci 18, 344-352.
[45] Hao HQ, Fan LS, Chen T, Li RL, Li XJ, He QH, Botella MA, Lin JX (2014). Clathrin and membrane microdomains cooperatively regulate RbohD dynamics and activity in Arabidopsis. Plant Cell 26, 1729-1745.
[46] Hara-Nishimura I, Hatsugai N (2011). The role of vacuole in plant cell death. Cell Death Differ 18, 1298-1304.
[47] Hatsugai N, Iwasaki S, Tamura K, Kondo M, Fuji K, Ogasawara K, Nishimura M, Hara-Nishimura I (2009). A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev 23, 2496-2506.
[48] He M, Lan M, Zhang BC, Zhou YH, Wang YQ, Zhu L, Yuan M, Fu Y (2018). Rab-H1b is essential for trafficking of cellulose synthase and for hypocotyl growth in Arabidop-si thaliana. J Integr Plant Biol 60, 1051-1069.
[49] Higashiyama T (2018). Plant reproduction: autocrine machinery for the long journey of the pollen tube. Curr Biol 28, R266-R269.
[50] Higashiyama T, Takeuchi H (2015). The mechanism and key molecules involved in pollen tube guidance. Annu Rev Plant Biol 66, 393-413.
[51] Ichikawa M, Hirano T, Enami K, Fuselier T, Kato N, Kwon C, Voigt B, Schulze-Lefert P, Baluška F, Sato MH (2014). Syntaxin of plant proteins SYP123 and SYP132 mediate root hair tip growth in Arabidopsi. thaliana. Plant Cell Physiol 55, 790-800.
[52] Idilli AI, Morandini P, Onelli E, Rodighiero S, Caccianiga M, Moscatelli A (2013). Microtubule depolymerization affects endocytosis and exocytosis in the tip and influences endosome movement in tobacco pollen tubes. Mol Plant 6, 1109-1130.
[53] Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW (2008). Repair of injured plasma membrane by rapid Ca2+-dependent endocytosis. J Cell Biol 180, 905- 914.
[54] Ischebeck T, Werner S, Krishnamoorthy P, Lerche J, Meijón M, Stenzel I, Löfke C, Wiessner T, Im YJ, Perera IY, Iven T, Feussner I, Busch W, Boss WF, Teichmann T, Hause B, Persson S, Heilmann I (2013). Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis. Plant Cell 25, 4894-4911.
[55] Jing HW, Strader LC (2019). Interplay of auxin and cyto-kinin in lateral root development. Int J Mol Sci 20, 486.
[56] Jiroutova P, Oklestkova J, Strnad M (2018). Crosstalk between brassinosteroids and ethylene during plant growth and under abiotic stress conditions. Int J Mol Sci 19, 3283.
[57] Johnson MA, Harper JF, Palanivelu R (2019). A fruitful journey: pollen tube navigation from germination to fertilization. Annu Rev Plant Biol 70, 809-837.
[58] Kakar K, Zhang HT, Scheres B, Dhonukshe P (2013). CLASP-mediated cortical microtubule organization guides PIN polarization axis. Nature 495, 529-533.
[59] Kalde M, Nühse TS, Findlay K, Peck SC (2007). The syntaxin SYP132 contributes to plant resistance against bacteria and secretion of pathogenesis-related protein 1. Proc Natl Acad Sci USA 104, 11850-11855.
[60] Ke MY, Ma ZM, Wang DY, Sun YB, Wen CJ, Huang DQ, Chen ZC, Yang L, Tan ST, Li RX, Friml J, Miao YS, Chen X (2021). Salicylic acid regulates PIN2 auxin transporter hyperclustering and root gravitropic growth via Remorin-dependen lipid nanodomain organisation in Arabidopsis thaliana. New Phytol 229, 963-978.
[61] Ketelaar T, Galway ME, Mulder BM, Emons AMC (2008). Rates of exocytosis and endocytosis in Arabidopsis root hairs and pollen tubes. J Microsc 231, 265-273.
[62] Kim H, Kwon H, Kim S, Kim MK, Botella MA, Yun HS, Kwon C (2016). Synaptotagmin 1 negatively controls the two distinct immune secretory pathways to powdery mil-dew fungi in Arabidopsis. Plant Cell Physiol 57, 1133- 1141.
[63] Larson ER, Domozych DS, Tierney ML (2014). SNARE VTI13 plays a unique role in endosomal trafficking pathways associated with the vacuole and is essential for cell wall organization and root hair growth in Arabidopsis. Ann Bot 114, 1147-1159.
[64] Larson ER, Van Zelm E, Roux C, Marion-Poll A, Blatt MR (2017). Clathrin heavy chain subunits coordinate endo- and exocytic traffic and affect stomatal movement. Plant Physiol 175, 708-720.
[65] Leyman B, Geelen D, Quintero FJ, Blatt MR (1999). A tobacco syntaxin with a role in hormonal control of guard cell ion channels. Science 283, 537-540.
[66] Li G, Liang W, Zhang X, Ren H, Hu J, Bennett MJ, Zhang D (2014). Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth. Proc Natl Acad Sci USA 111,10377-10382.
[67] Li N, Han X, Feng D, Yuan DY, Huang LJ (2019). Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? Int J Mol Sci 20, 671.
[68] Li RL, Liu P, Wan YL, Chen T, Wang QL, Mettbach U, Baluška F, Šamaj J, Fang XH, Lucas WJ, Lin JX (2012). A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell 24, 2105-2122.
[69] Li RX, Rodriguez-Furlan C, Wang JQ, van de Ven W, Gao T, Raikhel NV, Hicks GR (2017). Different endomembrane trafficking pathways establish apical and basal polarities. Plant Cell 29, 90-108.
[70] Lipka V, Kwon C, Panstruga R (2007). SNARE-ware: the role of SNARE-domain proteins in plant biology. Annu Rev Cell Dev Biol 23, 147-174.
[71] Livanos P, Müller S (2019). Division plane establishment and cytokinesis. Annu Rev Plant Biol 70, 239-267.
[72] Lou XL (2018). Sensing exocytosis and triggering endocy-tosis at synapses: synaptic vesicle exocytosis-endocytosis coupling. Front Cell Neurosci 12, 66.
[73] Ma J, Chen J, Wang M, Ren YL, Wang S, Lei CL, Cheng ZJ, Sodmergen (2018). Disruption of OsSEC3A increases the content of salicylic acid and induces plant defense responses in rice. J Exp Bot 69, 1051-1064.
[74] Marhavý P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H, Pařezová M, Petrášek J, Friml J, Kleine- Vehn J, Benková E (2011). Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 21, 796-804.
[75] Maritzen T, Haucke V (2018). Coupling of exocytosis and endocytosis at the presynaptic active zone. Neurosci Res 127, 45-52.
[76] Mayers JR, Hu TW, Wang C, Cárdenas JJ, Tan YQ, Pan JW, Bednarek SY (2017). SCD1 and SCD2 form a complex that functions with the exocyst and RabE1 in exocytosis and cytokinesis. Plant Cell 29, 2610-2625.
[77] McKenna ST, Kunkel JG, Bosch M, Rounds CM, Vidali L, Winship LJ, Hepler PK (2009). Exocytosis precedes and predicts the increase in growth in oscillating pollen tubes. Plant Cell 21, 3026-3040.
[78] McMahon HT, Boucrot E (2011). Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat Rev Mol Cell Biol 12, 517-533.
[79] McMichael CM, Reynolds GD, Koch LM, Wang C, Jiang N, Nadeau J, Sack FD, Gelderman MB, Pan JW, Bednarek SY (2013). Mediation of clathrin-dependent trafficking during cytokinesis and cell expansion by Arabidopsis stomatal cytokinesis defective proteins. Plant Cell 25, 3910-3925.
[80] McNeil PL, Miyake K, Vogel SS (2003). The endomembrane requirement for cell surface repair. Proc Natl Acad Sci USA 100, 4592-4597.
[81] Meckel T, Gall L, Semrau S, Homann U, Thiel G (2007). Guard cells elongate: relationship of volume and surface area during stomatal movement. Biophys J 92,1072-1080.
[82] Meng JG, Liang L, Jia PF, Wang YC, Li HJ, Yang WC (2020). Integration of ovular signals and exocytosis of a Ca2+ channel by MLOs in pollen tube guidance. Nat Plants 6, 143-153.
[83] Meyer D, Pajonk S, Micali C, O'Connell R, Schulze-Lefert P (2009). Extracellular transport and integration of plant secretory proteins into pathogen-induced cell wall compartments. Plant J 57, 986-999.
[84] Mosesso N, Bläske T, Nagel MK, Laumann M, Isono E (2019). Preparation of clathrin-coated vesicles from Arabidopsis thaliana seedlings. Front Plant Sci 9,1972.
[85] Mravec J, Petrášek J, Li N, Boeren S, Karlova R, Kitakura S, Pařezová M, Naramoto S, Nodzyński T, Dhonukshe P, Bednarek SY, Zažímalová E, de Vries S, Friml J (2011). Cell plate restricted association of DRP1A and PIN proteins is required for cell polarity establishment in Arabidopsis. Curr Biol 21, 1055-1060.
[86] Müller D, Leyser O (2011). Auxin, cytokinin and the control of shoot branching. Ann Bot 107, 1203-1212.
[87] Nagawa S, Xu TD, Lin DS, Dhonukshe P, Zhang XX, Friml J, Scheres B, Fu Y, Yang ZB (2012). ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 10, e1001299.
[88] Narasimhan M, Johnson A, Prizak R, Kaufmann WA, Tan ST, Casillas-Pérez B, Friml J (2020). Evolutionarily unique mechanistic framework of clathrin-mediated endocytosis in plants. eLife 9, e52067.
[89] Nielsen ME, Thordal-Christensen H (2013). Transcytosis shuts the door for an unwanted guest. Trends Plant Sci 18, 611-616.
[90] Pacifici E, Polverari L, Sabatini S (2015). Plant hormone cross-talk: the pivot of root growth. J Exp Bot 66, 1113- 1121.
[91] Paez Valencia J, Goodman K, Otegui MS (2016). Endocytosis and endosomal trafficking in plants. Annu Rev Plant Biol 67, 309-335.
[92] Pandya-Kumar N, Shema R, Kumar M, Mayzlish-Gati E, Levy D, Zemach H, Belausov E, Wininger S, Abu- Abied M, Kapulnik Y, Koltai H (2014). Strigolactone analog GR24 triggers changes in PIN2 polarity, vesicle trafficking and actin filament architecture. New Phytol 202, 1184-1196.
[93] Preuss ML, Serna J, Falbel TG, Bednarek SY, Nielsen E (2004). The Arabidopsis Rab GTPase RabA4b localizes to the tips of growing root hair cells. Plant Cell 16, 1589- 1603.
[94] Ravikumar R, Kalbfuß N, Gendre D, Steiner A, Altmann M, Altmann S, Rybak K, Edelmann H, Stephan F, Lampe M, Facher E, Wanner G, Falter-Braun P, Bhalerao RP, Assaad FF (2018). Independent yet overlapping pathways ensure the robustness and responsiveness of trans-Golgi network functions in Arabidopsis. Development 145, dev169201.
[95] Reynolds GD, Wang C, Pan JW, Bednarek SY (2018). Inroads into internalization: five years of endocytic exploration. Plant Physiol 176, 208-218.
[96] Richter S, Kientz M, Brumm S, Nielsen ME, Park M, Gavidia R, Krause C, Voss U, Beckmann H, Mayer U, Stierhof YD, Jürgens G (2014). Delivery of endocytosed proteins to the cell-division plane requires change of pathway from recycling to secretion. eLife 3, e02131.
[97] Robatzek S (2007). Vesicle trafficking in plant immune responses. Cell Microbiol 9, 1-8.
[98] Robert S, Kleine-Vehn J, Barbez E, Sauer M, Paciorek T, Baster P, Vanneste S, Zhang J, Simon S, Čovanová M, Hayashi K, Dhonukshe P, Yang ZB, Bednarek SY, Jones AM, Luschnig C, Aniento F, Zažímalová E, Friml J (2010). ABP1 mediates auxin inhibition of clathrin-dependent endocytosis in Arabidopsis. Cell 143, 111-121.
[99] Robinson DG (1996). Clathrin-mediated trafficking. Trends Plant Sci 1, 349-355.
[100] Rounds CM, Hepler PK, Winship LJ (2014). The apical actin fringe contributes to localized cell wall deposition and polarized growth in the lily pollen tube. Plant Physiol 166, 139-151.
[101] Salanenka Y, Verstraeten I, Löfke C, Tabata K, Naramoto S, Glanc M, Friml J (2018). Gibberellin DELLA signaling targets the retromer complex to redirect protein trafficking to the plasma membrane. Proc Natl Acad Sci USA 115, 3716-3721.
[102] Schaller GE, Bishopp A, Kieber JJ (2015). The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27, 44-63.
[103] Schapire AL, Valpuesta V, Botella MA (2009). Plasma membrane repair in plants. Trends Plant Sci 14, 645-652.
[104] Shimizu Y, Takagi J, Ito E, Ito Y, Ebine K, Komatsu Y, Goto Y, Sato M, Toyooka K, Ueda T, Kurokawa K, Uemura T, Nakano A (2021). Cargo sorting zones in the trans-Golgi network visualized by super-resolution confocal live imaging microscopy in plants. Nat Commun 12, 1901.
[105] Shope JC, DeWald DB, Mott KA (2003). Changes in surface area of intact guard cells are correlated with membrane internalization. Plant Physiol 133, 1314-1321.
[106] Sieberer BJ, Ketelaar T, Esseling JJ, Emons AMC (2005). Microtubules guide root hair tip growth. New Phytol 167, 711-719.
[107] Staehelin LA, Hepler PK (1996). Cytokinesis in higher plants. Cell 84, 821-824.
[108] Stenzel I, Ischebeck T, König S, Hołubowska A, Sporysz M, Hause B, Heilmann I (2008). The type B phosphate-dylinositol-4-phosphate 5-kinase 3 is essential for root hair formation in Arabidopsi. thaliana. Plant Cell 20, 124- 141.
[109] Sun JQ, Chen Q, Qi LL, Jiang HL, Li SY, Xu YX, Liu F, Zhou WK, Pan JW, Li XG, Palme K, Li CY (2011). Jasmonate modulates endocytosis and plasma mem-brane accumulation of the Arabidopsis PIN2 protein. New Phytol 191, 360-375.
[110] Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR (2007). Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol 17,1396-1402.
[111] Tam C, Idone V, Devlin C, Fernandes MC, Flannery A, He XX, Schuchman E, Tabas I, Andrews NW (2010). Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J Cell Biol 189, 1027-1038.
[112] Togo T, Alderton JM, Bi GQ, Steinhardt RA (1999). The mechanism of facilitated cell membrane resealing. J Cell Sci 112, 719-731.
[113] Togo T, Krasieva TB, Steinhardt RA (2000). A decrease in membrane tension precedes successful cell-membrane repair. Mol Biol Cell 11, 4339-4346.
[114] Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004). Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29, 49-65.
[115] Wang C, Hu TW, Yan X, Meng TT, Wang YT, Wang QM, Zhang XY, Gu Y, Sánchez-Rodríguez C, Gadeyne A, Lin JX, Persson S, Van Damme D, Li CY, Bednarek SY, Pan JW (2016). Differential regulation of clathrin and its adaptor proteins during membrane recruitment for endocytosis. Plant Physiol 171, 215-229.
[116] Wang C, Yan X, Chen Q, Jiang N, Fu W, Ma BJ, Liu JZ, Li CY, Bednarek SY, Pan JW (2013). Clathrin light chains regulate clathrin-mediated trafficking, auxin signaling, and development in Arabidopsis. Plant Cell 25, 499-516.
[117] Wang J, Ding Y, Wang JQ, Hillmer S, Miao YS, Lo SW, Wang XF, Robinson DG, Jiang LW (2010). EXPO, an exocyst-positive organelle distinct from multivesicular endosomes and autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis and tobacco cells. Plant Cell 22, 4009-4030.
[118] Wang PW, Pleskot R, Zang JZ, Winkler J, Wang J, Yperman K, Zhang T, Wang K, Gong JL, Guan YJ, Richardson C, Duckney P, Vandorpe M, Mylle E, Fiserova J, Van Damme D, Hussey PJ (2019). Plant AtEH/Pan1 proteins drive autophagosome formation at ER- PM contact sites with actin and endocytic machinery. Nat Commun 10, 5132.
[119] Webb MS, Steponkus PL (1993). Freeze-induced membrane ultrastructural alterations in rye (Secale cereale) leaves. Plant Physiol 101, 955-963.
[120] Yamazaki T, Kawamura Y, Minami A, Uemura M (2008). Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20, 3389-3404.
[121] Yan X, Wang YT, Xu M, Dahhan DA, Liu C, Zhang Y, Lin JX, Bednarek SY, Pan JW (2021). Cross-talk between clathrin-dependent post-Golgi trafficking and clathrin-me-diated endocytosis in Arabidopsis root cells. Plant Cell 33, 3057-3075.
[122] Yu QQ, Zhang Y, Wang J, Yan X, Wang C, Xu J, Pan JW (2016). Clathrin-mediated auxin efflux and maxima regulate hypocotyl hook formation and light-stimulated hook opening in Arabidopsis. Mol Plant 9, 101-112.
[123] Zhang CH, Brown MQ, van de Ven W, Zhang ZM, Wu B, Young MC, Synek L, Borchardt D, Harrison R, Pan SQ, Luo N, Huang YMM, Ghang YJ, Ung N, Li RX, Isley J, Morikis D, Song JK, Guo W, Hooley RJ, Chang CEA, Yang ZB, Zarsky V, Muday GK, Hicks GR, Raikhel NV (2016). Endosidin2 targets conserved exocyst complex subunit EXO70 to inhibit exocytosis. Proc Natl Acad Sci USA 113, E41-E50.
[124] Zhang L, Ma JW, Liu H, Yi Q, Wang YN, Xing JJ, Zhang PP, Ji SD, Li MJ, Li JY, Shen JB, Lin JX (2021). SNARE proteins VAMP721 and VAMP722 mediate the post-Golgi trafficking required for auxin-mediated development in Arabidopsis. Plant J 108, 426-440.
[125] Zhang WW, Cai C, Staiger CJ (2019a). Myosins XI are involved in exocytosis of cellulose synthase complexes. Plant Physiol 179, 1537-1555.
[126] Zhang X, Cui YN, Yu M, Lin JX (2019b). Single-molecule techniques for imaging exo-endocytosis coupling in cells. Trends Plant Sci 24, 879-880.
[127] Zhang Y, Yu QQ, Jiang N, Yan X, Wang C, Wang QM, Liu JZ, Zhu MY, Bednarek SY, Xu J, Pan JW (2017). Clathrin regulates blue light-triggered lateral auxin distribution and hypocotyl phototropism in Arabidopsis. Plant Cell Environ 40, 165-176.
[128] Zhao LF, Rehmani MS, Wang H (2020). Exocytosis and endocytosis: yin-yang crosstalk for sculpting a dynamic growing pollen tube tip. Front Plant Sci 11, 572848.
[129] Zonia L, Munnik T (2007). Life under pressure: hydrostatic pressure in cell growth and function. Trends Plant Sci 12, 90-97.
[130] Zwiewka M, Nodzyński T, Robert S, Vanneste S, Friml J (2015). Osmotic stress modulates the balance between exocytosis and clathrin-mediated endocytosis in Arabidopsi. thaliana. Mol Plant 8, 1175-1187.
文章导航

/

[an error occurred while processing this directive]