研究报告

水稻籽粒维生素E QTL挖掘及候选基因分析

展开
  • 1浙江师范大学化学与生命科学学院, 金华 321004
    2中国水稻研究所水稻生物学国家重点实验室, 杭州 310006

收稿日期: 2021-12-12

  录用日期: 2022-01-20

  网络出版日期: 2022-01-20

基金资助

国家科技重大专项子课题(2016ZX08009003-003-008);国家自然科学基金(U20A2030);国家自然科学基金(31971921);浙江省自然科学基金(LY18C020003);中国水稻生物学国家重点实验室开放项目(20200102)

QTL Mapping and Candidate Gene Analysis of Vitamin E in Rice Grain

Expand
  • 1College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China
    2State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China

Received date: 2021-12-12

  Accepted date: 2022-01-20

  Online published: 2022-01-20

摘要

维生素E (VE)是稻米营养品质的重要指标。水稻(Oryza sativa)是我国种植最广泛的粮食作物, 增加其籽粒的VE含量是实现国民营养强化的一条便捷有效的途径。该研究以籼稻华占(HZ)为父本, 粳稻热研2号(Nekken2)为母本, 构建120个重组自交系(RILs)群体。采用高效液相色谱法(HPLC)对RILs群体的VE各组分含量进行测定, 并基于构建的高密度分子遗传图谱进行QTL定位, 谱系分析后挖掘到122个VE总量和分量相关QTLs, 分布在12条染色体上。其中qT3α/to2-1的LOD值高达10.32, qT3α2-1的LOD值高达9.91, 另有多个控制各异构体含量的主效QTLs, 且区间内包含OsGGR1OsGGR2OsTCOsγTMT等VE生物合成基因。通过qRT-PCR检测亲本中VE合成基因的表达量, 发现在华占中候选基因的表达量均极显著高于热研2号, 推测这些基因的高表达是华占生育酚及生育三烯酚含量高于热研2号的原因。研究挖掘到的QTL数目较多, LOD值也较大, 为进一步筛选和培育高VE含量的水稻新品种奠定了分子基础, 同时为揭示水稻VE生物合成的分子调控机制提供了重要基因资源。

本文引用格式

叶涵斐, 殷文晶, 管易安, 杨凯如, 陈芊羽, 俞淑颖, 朱旭东, 辛德东, 章薇, 王跃星, 饶玉春 . 水稻籽粒维生素E QTL挖掘及候选基因分析[J]. 植物学报, 2022 , 57(2) : 157 -170 . DOI: 10.11983/CBB21216

Abstract

Vitamin E (VE) is an important index of rice nutritional quality. Rice (Oryza sativa) is the most widely planted crop in China. To increase rice VE content is a convenient and effective way to improve its nutrient composition. In this study, 120 recombinant inbred line (RIL) populations were constructed with indica rice HZ as male parent and japonica rice Nekken2 as female parent. The content of vitamin E isomer in the population was determined by high performance liquid chromatography (HPLC). Quantitative trait loci (QTL) mapping was carried out based on the constructed high-density molecular genetic map. After pedigree analysis, 122 VE related QTLs were identified, which were distributed on 12 chromosomes. Some loci have high LOD scores, such as qT3α/to2-1 with 10.32 LOD score, qT3α2-1 of 9.91 LOD score. There are multiple major QTLs associated with the content of different conformations, and some VE biosynthesis genes are within the intervals, e.g., OsGGR1, OsGGR2, OsTC and OsγTMT. The expression of these genes were analyzed by qRT-PCR. The results showed that their expression in HZ was significantly higher than that in Nekken2. It is speculated that the high expression of these genes is the reason of why tocopherol and tocotrienol in HZ are higher than in Nekken2. The number of QTLs and the scores of LOD are large, which provides a molecular basis for further screening and cultivating rice varieties with high VE content also conductive to clarify the molecular regulation mechanism of rice VE biosynthesis through QTLs.

参考文献

[1] 江良荣, 李义珍, 王侯聪, 黄育民 (2004). 稻米营养品质的研究现状及分子改良途径. 分子植物育种 1, 112-120.
[2] 李春梅 (2019). 两个水稻黄绿叶突变基因的图位克隆及功能分析. 博士论文. 成都: 四川农业大学. pp. 24-84.
[3] 潘晨阳, 叶涵斐, 周维永, 王盛, 李梦佳, 路梅, 李三峰, 朱旭东, 王跃星, 饶玉春, 戴高兴 (2021a). 水稻籽粒镉积累QTL定位及候选基因分析. 植物学报 56, 25-32.
[4] 潘晨阳, 张月, 林晗, 陈芊羽, 杨凯如, 姜嘉骥, 李梦佳, 芦涛, 王珂欣, 路梅, 王盛, 叶涵斐, 饶玉春, 胡海涛 (2021b). 水稻叶片水势的QTL定位与候选基因分析. 植物学报 56, 275-283.
[5] 潘卫东, 李晓峰, 陈双燕, 刘公社 (2006). 植物维生素E合成相关酶基因的克隆及其在体内功能研究进展. 植物学通报 23, 68-77.
[6] 饶玉春, 戴志俊, 朱怡彤, 姜嘉骥, 马若盈, 王予烨, 王跃星 (2020a). 水稻抗干旱胁迫的研究进展. 浙江师范大学学报(自然科学版) 43, 417-429.
[7] 饶玉春, 林晗, 肖飒清, 吴仪, 张月, 王盛, 胡佳青, 薛大伟 (2020b). 水稻耐淹性的QTL定位与候选基因分析. 浙江师范大学学报(自然科学版) 43, 312-319.
[8] 王迪 (2017). 水稻生育酚合成基因SGD1的图位克隆与功能分析. 博士论文. 南京: 南京农业大学. pp. 35-58.
[9] 尹雪斌, 赵其国, 印遇龙, 陈清清, 王张民, 宋佳平, 王晓丽, 林锦钰, 王莉莉, 刘晓航, 张泽洲, 张宁 (2022). 功能农业关键科学问题研究进展与“十四五”发展建议. 科学通报 67, 497-510.
[10] 章薇 (2017). 拟南芥叶绿素代谢与维生素E合成代谢的关系研究. 博士论文. 武汉: 华中农业大学. pp. 1-23.
[11] 章秀福, 王丹英, 方福平, 曾衍坤, 廖西元 (2005). 中国粮食安全和水稻生产. 农业现代化研究 26, 85-88.
[12] 周纯, 焦然, 胡萍, 林晗, 胡娟, 徐娜, 吴先美, 饶玉春, 王跃星 (2019). 水稻早衰突变体LS-es1的基因定位及候选基因分析. 植物学报 54, 606-619.
[13] 周浩, 夏朵, 赵达, 李艳华, 李平波, 吴边, 高冠军, 张庆路, 何予卿 (2020). 稻米食味品质的遗传研究进展. 见:第十九届中国作物学会学术年会论文摘要集. 武汉: 中国作物学会. pp. 56.
[14] Chaudhary N, Khurana P (2009). Vitamin E biosynthesis genes in rice: molecular characterization, expression profiling and comparative phylogenetic analysis. Plant Sci 177, 479-491.
[15] Hosomi A, Arita M, Sato Y, Kiyose C, Ueda T, Igarashi O, Arai H, Inoue K (1997). Affinity for α-tocopherol transfer protein as a determinant of the biological activities of vitamin E analogs. FEBS Lett 409, 105-108.
[16] Hwang JE, Ahn JW, Kwon SJ, Kim JB, Kim SH, Kang SY, Kim DS (2014). Selection and molecular characterization of a high tocopherol accumulation rice mutant line induced by gamma irradiation. Mol Biol Rep 41, 7671-7681.
[17] Kimura E, Abe T, Murata K, Kimura T, Otoki Y, Yoshida T, Miyazawa T, Nakagawa K (2018). Identification of OsGGR2, a second geranylgeranyl reductase involved in α-tocopherol synthesis in rice. Sci Rep 8, 1870.
[18] Kruk J, Strzałka K (1995). Occurrence and function of α- tocopherol quinone in plants. J Plant Physiol 145, 405-409.
[19] Li Y, Wang ZN, Sun XF, Tang KX (2008). Current opinions on the functions of tocopherol based on the genetic manipulation of tocopherol biosynthesis in plants. J Integr Plant Biol 50, 1057-1069.
[20] Luo W, Huan Q, Xu YY, Qian WF, Chong K, Zhang JY (2021). Integrated global analysis reveals a vitamin E- vitamin K1 sub-network, downstream of COLD1, underlying rice chilling tolerance divergence. Cell Rep 36(3), 58- 76.
[21] McCouch SR, Cho YC, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997). Report on QTL nomenclature. Rice Genet Newsl 14, 11-13.
[22] Sekine D, Murata K, Kimura T, Nakagawa K, Miyazawa T (2016). Identification of a genetic factor required for high γ-isoform concentration in rice vitamin E. J Agric Food Chem 64, 9368-9373.
[23] Sookwong P, Murata K, Nakagawa K, Shibata A, Kimura T, Yamaguchi M, Kojima Y, Miyazawa T (2009). Cross- fertilization for enhancing tocotrienol biosynthesis in rice plants and QTL analysis of their F2 progenies. J Agric Food Chem 57, 4620-4625.
[24] Tucker JM, Townsend DM (2005). Alpha-tocopherol: roles in prevention and therapy of human disease. Biomed Pharmacother 59, 380-387.
[25] Wang X, Song YE, Li JY (2013). High expression of tocochromanol biosynthesis genes increases the vitamin E level in a new line of giant embryo rice. J Agric Food Chem 61, 5860-5869.
[26] Wang XQ, Yoon MY, He Q, Kim TS, Tong W, Choi BW, Lee YS, Park YJ (2015). Natural variations in OsγTMT contribute to diversity of the α-tocopherol content in rice. Mol Genet Genomics 290, 2121-2135.
[27] Wang YX, Shang LG, Yu H, Zeng LJ, Hu J, Ni S, Rao YC, Li SF, Chu JF, Meng XB, Wang L, Hu P, Yan JJ, Kang SJ, Qu MH, Lin H, Wang T, Wang Q, Hu XM, Chen HQ, Wang B, Gao ZY, Guo LB, Zeng DL, Zhu XD, Xiong GS, Li JY, Qian Q (2020). A strigolactone biosynthesis gene contributed to the green revolution in rice. Mol Plant 13, 923-932.
[28] Yang WY, Cahoon RE, Hunter SC, Zhang CY, Han JX, Borgschulte T, Cahoon EB (2011). Vitamin E biosynthesis: functional characterization of the monocot homogenti- sate geranylgeranyl transferase. Plant J 65, 206-217.
[29] Zhang CY, Cahoon RE, Hunter SC, Chen M, Han JX, Cahoon EB (2013). Genetic and biochemical basis for alternative routes of tocotrienol biosynthesis for enhanced vitamin E antioxidant production. Plant J 73, 628-639.
[30] Zhang XN, Li PB, Yun P, Wang LQ, Gao GJ, Zhang QL, Luo LJ, Zhang CY, He YQ (2019). Genetic dissection of vitamin E content in rice (Oryza sativa) grains using recombinant inbred lines derived from a cross between ‘Zhenshan97B’ and ‘Nanyangzhan’. Plant Breed 138, 820- 829.
文章导航

/