特邀综述

植物TOR激酶响应上游信号的研究进展

展开
  • 1福建农林大学生命科学学院, 福州 350002
    2福建农林大学海峡联合研究院作物合成生物学研究中心, 福州 350002
* E-mail: yanxiong@fafu.edu.cn
第一联系人:

共同第一作者。

收稿日期: 2021-10-25

  录用日期: 2022-01-09

  网络出版日期: 2022-01-10

基金资助

国家自然科学基金(31870269);国家自然科学基金(32100220)

Novel Links in the Plant Target of Rapamycin Signaling Networks

Expand
  • 1College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
    2Plant Synthetic Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
First author contact:

These authors contributed equally to this paper.

Received date: 2021-10-25

  Accepted date: 2022-01-09

  Online published: 2022-01-10

摘要

雷帕霉素靶蛋白(TOR)是真核生物中高度保守的丝氨酸/苏氨酸蛋白激酶, 能整合营养、能量、生长因子及环境信号, 协调细胞增殖、生长和代谢等过程, 是真核生物生长发育的核心调控因子。近年来, 随着相关研究系统的建立, 植物TOR的功能和机制研究取得了众多突破, 发现其进化上保守的生物学功能及植物中特有的信号通路。该文概述了TOR蛋白复合体的构成, 以及植物TOR响应糖、营养元素(氮、磷和硫)、激素及逆境胁迫信号来调控下游基因转录、蛋白翻译、代谢、细胞自噬和胁迫应答等生物学过程的分子机制, 并提出了植物TOR领域一些亟待解决的科学问题, 以期为全面揭示植物TOR的生物学功能提供参考。

本文引用格式

孟彦彦, 张楠, 熊延 . 植物TOR激酶响应上游信号的研究进展[J]. 植物学报, 2022 , 57(1) : 1 -11 . DOI: 10.11983/CBB21183

Abstract

Target of rapamycin (TOR) is a highly conserved serine/threonine-protein kinase among all eukaryotes. As a central regulator, TOR integrates nutrient, energy, growth factor and environmental signals to control cell proliferation, growth, and metabolism. With the establishment of TOR research systems in plants, tremendous progress has been made in, both conserved and unique functions of plant TOR have been uncovered in recent years. Here, we reviewed TOR complexes and the mechanisms of plant TOR integrating sugar, nitrogen, phosphate, sulfur, phytohormone and stress signals to orchestrate transcription, translation, metabolism, autophagy, and stress responses. We also highlight a few fundamental questions that will be of great interest to be resolved for fully revealing biofunctions of plant TOR.

参考文献

[1] 陈唯, 曾晓贤, 谢楚萍, 田长恩, 周玉萍 (2019). 植物内源ABA水平的动态调控机制. 植物学报 54, 677-687.
[2] 温兴, 晋莲, 郭红卫 (2021). 甜蜜的相遇--营养与激素信号协同调节植物生长的新机制. 植物学报 56, 138-141.
[3] Albert V, Hall MN (2015). mTOR signaling in cellular and organismal energetics. Curr Opin Cell Biol 33, 55-66.
[4] Anderson GH, Veit B, Hanson MR (2005). The Arabidopsis AtRaptor genes are essential for post-embryonic plant growth. BMC Biol 3, 12.
[5] Aylett CHS, Sauer E, Imseng S, Boehringer D, Hall MN, Ban N, Maier T (2016). Architecture of human mTOR com- plex 1. Science 351, 48-52.
[6] Beltrán-Peña E, Aguilar R, Ortíz-López A, Dinkova TD, De Jiménez ES (2002). Auxin stimulates S6 ribosomal protein phosphorylation in maize thereby affecting protein synthesis regulation. Physiol Plant 115, 291-297.
[7] Brunkard JO (2020). Exaptive evolution of target of rapamycin signaling in multicellular eukaryotes. Dev Cell 54, 142-155.
[8] Brunkard JO, Xu M, Scarpin MR, Chatterjee S, Shemyakina EA, Goodman HM, Zambryski P (2020). TOR dynamically regulates plant cell-cell transport. Proc Natl Acad Sci USA 117, 5049-5058.
[9] Burkart GM, Brandizzi F (2021). A tour of TOR complex signaling in plants. Trends Biochem Sci 46, 417-428.
[10] Busche M, Scarpin MR, Hnasko R, Brunkard JO (2021). TOR coordinates nucleotide availability with ribosome biogenesis in plants. Plant Cell 33, 1615-1632.
[11] Cao PF, Kim SJ, Xing AQ, Schenck CA, Liu L, Jiang N, Wang J, Last RL, Brandizzi F (2019). Homeostasis of branched-chain amino acids is critical for the activity of TOR signaling in Arabidopsis. eLife 8, e50747.
[12] Chen GH, Liu MJ, Xiong Y, Sheen J, Wu SH (2018). TOR and RPS6 transmit light signals to enhance protein translation in deetiolating Arabidopsis seedlings. Proc Natl Acad Sci USA 115, 12823-12828.
[13] Chen K, Li GJ, Bressan RA, Song CP, Zhu JK, Zhao Y (2020). Abscisic acid dynamics, signaling, and functions in plants. J Integr Plant Biol 62, 25-54.
[14] Couso I, Pérez-Pérez ME, Ford MM, Martínez-Force E, Hicks LM, Umen JG, Crespo JL (2020). Phosphorus availability regulates TORC1 signaling via LST8 in chlamydomonas. Plant Cell 32, 69-80.
[15] David-Morrison G, Xu Z, Rui YN, Charng WL, Jaiswal M, Yamamoto S, Xiong B, Zhang K, Sandoval H, Duraine L, Zuo ZY, Zhang S, Bellen HJ (2016). WAC regulates mTOR activity by acting as an adaptor for the TTT and Pontin/Reptin complexes. Dev Cell 36, 139-151.
[16] De Vleesschauwer D, Filipe O, Hoffman G, Seifi HS, Haeck A, Canlas P, Van Bockhaven J, De Waele E, Demeestere K, Ronald P, Hofte M (2018). Target of rapamycin signaling orchestrates growth-defense trade-offs in plants. New Phytol 217, 305-319.
[17] Deprost D, Yao L, Sormani R, Moreau M, Leterreux G, Nicolaï M, Bedu M, Robaglia C, Meyer C (2007). The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation. EMBO Rep 8, 864-870.
[18] Dobrenel T, Caldana C, Hanson J, Robaglia C, Vincentz M, Veit B, Meyer C (2016). TOR signaling and nutrient sensing. Annu Rev Plant Biol 67, 261-285.
[19] Dong Y, Teleman AA, Jedmowski C, Wirtz M, Hell R (2019). The Arabidopsis THADA homologue modulates TOR activity and cold acclimation. Plant Biol 21, 77-83.
[20] Dong YH, Silbermann M, Speiser A, Forieri I, Linster E, Poschet G, Samami AA, Wanatabe M, Sticht C, Teleman AA, Deragon JM, Saito K, Hell R, Wirtz M (2017). Sulfur availability regulates plant growth via glucose-TOR signaling. Nat Commun 8, 1174.
[21] Fu LW, Liu YL, Qin GC, Wu P, Zi HL, Xu ZT, Zhao XD, Wang Y, Li YX, Yang SH, Peng C, Wong CCL, Yoo SD, Zuo ZC, Liu RY, Cho YH, Xiong Y (2021). The TOR- EIN2 axis mediates nuclear signaling to modulate plant growth. Nature 591, 288-292.
[22] Fu LW, Wang PC, Xiong Y (2020). Target of rapamycin signaling in plant stress responses. Plant Physiol 182, 1613-1623.
[23] Garber K (2001). Rapamycin may prevent post-transplant lymphoma. J Natl Cancer Inst 93, 1519.
[24] Garcia N, Li YB, Dooner HK, Messing J (2017). Maize defective kernel mutant generated by insertion of a Ds element in a gene encoding a highly conserved TTI2 cochaperone. Proc Natl Acad Sci USA 114, 5165-5170.
[25] González A, Hall MN, Lin SC, Hardie DG (2020). AMPK and TOR: the Yin and Yang of cellular nutrient sensing and growth control. Cell Metab 31, 472-492.
[26] Greenham K, McClung CR (2015). Integrating circadian dynamics with physiological processes in plants. Nat Rev Genet 16, 598-610.
[27] Heitman J, Movva NR, Hall MN (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253, 905-909.
[28] Inaba JI, Nagy PD (2018). Tombusvirus RNA replication depends on the TOR pathway in yeast and plants. Virology 519, 207-222.
[29] Kahan BD (2003). Discoverer of the treasure from a barren island: suren sehgal (10 February 1932 to 21 January 2003). Transplantation 76, 623-624.
[30] Kim SG, Hoffman GR, Poulogiannis G, Buel GR, Jang YJ, Lee KW, Kim BY, Erikson RL, Cantley LC, Choo AY, Blenis J (2013). Metabolic stress controls mTORC1 lysosomal localization and dimerization by regulating the TTT-RUVBL1/2 complex. Mol Cell 49, 172-185.
[31] Laplante M, Sabatini DM (2012). mTOR signaling in growth control and disease. Cell 149, 274-293.
[32] Li B, Wang Y, Zhang YY, Tian WW, Chong K, Jang JC, Wang L (2019). PRR5, 7 and 9 positively modulate TOR signaling-mediated root cell proliferation by repressing TANDEM ZINC FINGER 1 in Arabidopsis. Nucleic Acids Res 47, 5001-5015.
[33] Li L, Liu KH, Sheen J (2021). Dynamic nutrient signaling networks in plants. Annu Rev Cell Dev Biol 37, 341-367.
[34] Li XJ, Cai WG, Liu YL, Li H, Fu LW, Liu ZY, Xu L, Liu HT, Xu TD, Xiong Y (2017). Differential TOR activation and cell proliferation in Arabidopsis root and shoot apexes. Proc Natl Acad Sci USA 114, 2765-2770.
[35] Liu GY, Sabatini DM (2020). mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 21, 183-203.
[36] Liu YL, Duan XL, Zhao XD, Ding WL, Wang YW, Xiong Y (2021). Diverse nitrogen signals activate convergent ROP2- TOR signaling in Arabidopsis. Dev Cell 56, 1283-1295.
[37] Menand B, Desnos T, Nussaume L, Berger F, Bouchez D, Meyer C, Robaglia C (2002). Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc Natl Acad Sci USA 99, 6422-6427.
[38] Nukarinen E, Nägele T, Pedrotti L, Wurzinger B, Mair A, Landgraf R, Börnke F, Hanson J, Teige M, Baena-Gonzalez E, Dröge-Laser W, Weckwerth W (2016). Quantitative phosphoproteomics reveals the role of the AMPK plant ortholog SnRK1 as a metabolic master regulator under energy deprivation. Sci Rep 6, 31697.
[39] O'Leary BM, Oh GGK, Lee CP, Millar AH (2020). Metabolite regulatory interactions control plant respiratory metabolism via target of rapamycin (TOR) kinase activation. Plant Cell 32, 666-682.
[40] Pacheco JM, Canal MV, Pereyra CM, Welchen E, Martínez-Noël GMA, Estevez JM (2021). The tip of the iceberg: emerging roles of TORC1, and its regulatory functions in plant cells. J Exp Bot 72, 4085-4101.
[41] Pfeiffer A, Janocha D, Dong YH, Medzihradszky A, Schöne S, Daum G, Suzaki T, Forner J, Langenecker T, Rempel E, Schmid M, Wirtz M, Hell R, Lohmann JU (2016). Integration of light and metabolic signals for stem cell activation at the shoot apical meristem. eLife 5, e17023.
[42] Pu YT, Luo XJ, Bassham DC (2017). TOR-dependent and -independent pathways regulate autophagy in Arabidopsis thaliana. Front Plant Sci 8, 1204.
[43] Ren MZ, Qiu SQ, Venglat P, Xiang DQ, Feng L, Selvaraj G, Datla R (2011). Target of rapamycin regulates development and ribosomal RNA expression through kinase domain in Arabidopsis. Plant Physiol 155, 1367-1382.
[44] Riegler S, Servi L, Scarpin MR, Godoy Herz MA, Kubac-zka MG, Venhuizen P, Meyer C, Brunkard JO, Kalyna M, Barta A, Petrillo E (2021). Light regulates alternative splicing outcomes via the TOR kinase pathway. Cell Rep 36, 109676.
[45] Ryabova LA, Robaglia C, Meyer C (2019). Target of ra-pamycin kinase: central regulatory hub for plant growth and metabolism. J Exp Bot 70, 2211-2216.
[46] Sabatini DM (2017). Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc Natl Acad Sci USA 114, 11818-11825.
[47] Saxton RA, Sabatini DM (2017). mTOR signaling in growth, metabolism, and disease. Cell 168, 960-976.
[48] Schepetilnikov M, Dimitrova M, Mancera-Martínez E, Geldreich A, Keller M, Ryabova LA (2013). TOR and S6K1 promote translation reinitiation of uORF-containing mRNAs via phosphorylation of eIF3h. EMBO J 32, 1087-1102.
[49] Schepetilnikov M, Kobayashi K, Geldreich A, Caranta C, Robaglia C, Keller M, Ryabova LA (2011). Viral factor TAV recruits TOR/S6K1 signaling to activate reinitiation after long ORF translation. EMBO J 30, 1343-1356.
[50] Schepetilnikov M, Makarian J, Srour O, Geldreich A, Yang ZB, Chicher J, Hammann P, Ryabova LA (2017). GTPase ROP2 binds and promotes activation of target of rapamycin, TOR, in response to auxin. EMBO J 36, 886-903.
[51] Sehgal SN, Baker H, Vézina C (1975). Rapamycin (AY-22, 989), a new antifungal antibiotic. II. Fermentation, isola-tion and characterization. J Antibiot 28, 727-732.
[52] Sharma M, Banday ZZ, Shukla BN, Laxmi A (2019). Glu-cose-regulated HLP1 acts as a key molecule in governing thermomemory. Plant Physiol 180, 1081-1100.
[53] Shi L, Wu Y, Sheen J (2018). TOR signaling in plants: con-servation and innovation. Development 145, dev160887.
[54] Shimobayashi M, Hall MN (2014). Making new contacts: the mTOR network in metabolism and signaling crosstalk. Nat Rev Mol Cell Biol 15, 155-162.
[55] Smailov B, Alybayev S, Smekenov I, Mursalimov A, Sa-parbaev M, Sarbassov D, Bissenbaev A (2020). Wheat germination is dependent on plant target of rapamycin signaling. Front Cell Dev Biol 8, 606685.
[56] Soprano AS, Smetana JHC, Benedetti CE (2018). Regula-tion of tRNA biogenesis in plants and its link to plant growth and response to pathogens. Biochim Biophys Acta Gene Regul Mech 1861, 344-353.
[57] Su WL, Bao Y, Yu XQ, Xia XL, Liu C, Yin WL (2020). Autophagy and its regulators in response to stress in plants. Int J Mol Sci 21, 8889.
[58] Tatebe H, Shiozaki K (2017). Evolutionary conservation of the components in the TOR signaling pathways. Biomolecules 7, 77.
[59] Turck F, Zilbermann F, Kozma SC, Thomas G, Nagy F (2004). Phytohormones participate in an S6 kinase signal transduction pathway in Arabidopsis. Plant Physiol 134, 1527-1535.
[60] Van Leene J, Han C, Gadeyne A, Eeckhout D, Matthijs C, Cannoot B, De Winne N, Persiau G, Van De Slijke E, Van de Cotte B, Stes E, Van Bel M, Storme V, Impens F, Gevaert K, Vandepoele K, De Smet I, De Jaeger G (2019). Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat Plants 5, 316-327.
[61] Wang LJ, Li HH, Zhao CZ, Li SF, Kong LY, Wu WW, Kong WS, Liu Y, Wei YY, Zhu JK, Zhang HR (2017). The in-hibition of protein translation mediated by AtGCN1 is es-sential for cold tolerance in Arabidopsis thaliana. Plant Cell Environ 40, 56-68.
[62] Wang PC, Zhao Y, Li ZP, Hsu CC, Liu X, Fu LW, Hou YJ, Du YY, Xie SJ, Zhang CG, Gao JH, Cao MJ, Huang XS, Zhu YF, Tang K, Wang XG, Tao WA, Xiong Y, Zhu JK (2018). Reciprocal regulation of the TOR kinase and ABA receptor balances plant growth and stress response. Mol Cell 69, 100-112.
[63] Wang Y, Qin YM, Li B, Zhang YY, Wang L (2020). Attenuated TOR signaling lengthens circadian period in Arabi-dopsis. Plant Signal Behav 15, 1710935.
[64] Wu Y, Shi L, Li L, Fu LW, Liu YL, Xiong Y, Sheen J (2019). Integration of nutrient, energy, light, and hormone signaling via TOR in plants. J Exp Bot 70, 2227-2238.
[65] Xiong Y, McCormack M, Li L, Hall Q, Xiang CB, Sheen J (2013). Glucose-TOR signaling reprograms the transcriptome and activates meristems. Nature 496, 181-186.
[66] Xiong Y, Sheen J (2012). Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem 287, 2836-2842.
[67] Xiong Y, Sheen J (2014). The role of target of rapamycin signaling networks in plant growth and metabolism. Plant Physiol 164, 499-512.
[68] Xiong Y, Sheen J (2015). Novel links in the plant TOR kinase signaling network. Curr Opin Plant Biol 28, 83-91.
[69] Yang HR, Wang J, Liu MJ, Chen XZ, Huang M, Tan D, Dong MQ, Wong CCL, Wang JW, Xu YH, Wang HW (2016). 4.4 Å resolution Cryo-EM structure of human mTOR complex 1. Protein Cell 7, 878-887.
[70] Yu YD, Zhong ZC, Ma LY, Xiang CB, Xu P, Xiong Y (2021). Direct sulphate-TOR signaling controls transcrip-tional reprogramming for shoot apex activation in Arabi-dopsis. bioRxiv doi: 10.1101/2021.03.09.434511.
[71] Yuan XB, Xu P, Yu YD, Xiong Y (2020). Glucose-TOR signaling regulates PIN2 stability to orchestrate auxin gradient and cell expansion in Arabidopsis root. Proc Natl Acad Sci USA 117, 32223-32225.
[72] Zhang N, Meng YY, Li X, Zhou Y, Ma LY, Fu LW, Schwarzländer M, Liu HT, Xiong Y (2019). Metabolite-mediated TOR signaling regulates the circadian clock in Arabidop-sis. Proc Natl Acad Sci USA 116, 25395-25397.
[73] Zhang ZZ, Zhu JY, Roh J, Marchive C, Kim SK, Meyer C, Sun Y, Wang WF, Wang ZY (2016). TOR signaling pro-motes accumulation of BZR1 to balance growth with carbon availability in Arabidopsis. Curr Biol 26, 1854-1860.
[74] Zhu JK (2016). Abiotic stress signaling and responses in plants. Cell 167, 313-324.
文章导航

/