水稻穗长基因PAL3的克隆及自然变异分析
收稿日期: 2021-07-21
录用日期: 2021-09-16
网络出版日期: 2021-09-16
基金资助
国家重点研发计划(2016YFD0100401)
Map-based Cloning and Natural Variation Analysis of the PAL3 Gene Controlling Panicle Length in Rice
Received date: 2021-07-21
Accepted date: 2021-09-16
Online published: 2021-09-16
穗型是决定水稻(Oryza sativa)产量的关键因素之一。我们从粳稻品种圣稻808 (SD808)的EMS诱变突变体库中发现4份短穗突变体, 这些突变体的穗长、一级枝梗数、二级枝梗数和穗粒数发生不同程度的降低。基因定位和图位克隆表明, 这些突变体的表型受同一基因控制, 将该基因命名为PAL3 (PANICLE LENGTH3)。PAL3编码一个含12个跨膜结构域的多肽转运蛋白。pal3-1和pal3-2的点突变造成保守区域的氨基酸发生非同义突变; pal3-3的点突变造成第1外显子和内含子拼接错误; pal3-4的点突变造成蛋白翻译提前终止, 导致第12个跨膜域缺失。对PAL3进行单倍型分析, 共鉴定出9个单倍型(Hap1-Hap9), 其中Hap1-Hap3为主要单倍型。Hap1以粳稻为主, Hap2同时包含籼稻和粳稻, Hap3则以籼稻为主。Hap1起源于普通野生稻(O. rufipogon), Hap2和Hap3可能起源于一年生普通野生稻(O. nivara)。统计分析结果表明, Hap3的穗长显著高于Hap1和Hap2, 其具有提高穗长的潜力。该研究揭示了多肽转运蛋白对水稻穗型的重要调控作用, 为水稻穗型改良奠定了理论基础。
尚江源, 淳雁, 李学勇 . 水稻穗长基因PAL3的克隆及自然变异分析[J]. 植物学报, 2021 , 56(5) : 520 -532 . DOI: 10.11983/CBB21119
Panicle architecture is one of the key factors determining the rice (Oryza sativa) grain yield. In this study, four short panicle mutants were identified from an EMS (ethyl methane sulfonate) mutant library of a japonica vareity Shengdao 808 (SD808). The panicle length, primary branch number, secondary branch number and grain number per panicle of these mutants were decreased in various degrees. Map-based cloning showed that these mutants were controlled by the gene PAL3 (PANICLE LENGTH 3) which encodes a peptide transporter with 12 transmembrane domains. The point mutations of pal3-1 and pal3-2 resulted in non-synonymous mutations of amino acids in the conserved region; the point mutation of pal3-3 resulted in the mis-splicing of the first exon and intron; and the point mutation of pal3-4 resulted in the premature termination of translation and thus the deletion of the 12th transmembrane domain. Through haplotype analysis, nine haplotypes of PAL3 were identified, including three major haplotypes (Hap1-Hap3). Hap1 is dominated by japonica accessions, Hap2 contains both indica and japonica accessions, while Hap3 is dominated by indica accessions. Hap1 originated from O. rufipogon, while Hap2 and Hap3 may originate from O. nivara. Statistical analysis showed that the panicle length of Hap3 was significantly higher than that of Hap1 and Hap2, indicating that Hap3 may have the potential to improve the panicle length. In conclusion, this study revealed the important role of the peptide transporter in regulating rice panicle architecture and thus provides a new theoretical basis for rice panicle architecture improvement.
[1] | 淳雁, 李学勇 (2017). 水稻穗型的遗传调控研究进展. 植物学报 52, 19-29. |
[2] | 刘丹, 王嘉宇, 刘进, 马殿荣, 赵明辉, 陈温福 (2015). 水稻散状穗突变体sp的遗传分析及基因初定位. 植物学报 50, 198-205. |
[3] | 刘玉良, 郑术芝 (2017). 水稻产量相关性状驯化研究进展. 植物学报 52, 113-121. |
[4] | 田翠 (2010). 复粒稻小穗簇生突变体基因的遗传分析和初步定位. 硕士论文. 重庆: 重庆大学. pp. 19-23. |
[5] | 吴光南, 张云桥 (1962). 稻穗发育过程及其控制途径的研究. 作物学报 1, 43-52. |
[6] | 张淑红 (2002). 水稻中控制形态结构建成相关基因的功能研究. 博士论文. 上海: 复旦大学. pp. 70-78. |
[7] | 郑雷英, 朱旭东, 钱前, 赵忠, 张建军, 胡筱荷, 林鸿宣, 罗达 (2003). 水稻穗部突变体CL的形态和定位分析. 科学通报 48, 264-267. |
[8] | 周鹏 (2009). 水稻簇生穗突变体Cl-dz的形态特征及遗传定位. 硕士论文. 成都: 四川农业大学. pp. 28-30. |
[9] | Chiang CS, Stacey G, Tsay YF (2004). Mechanisms and functional properties of two peptide transporters, AtPTR2 and fPTR2. J Biol Chem 279, 30150-30157. |
[10] | Choi JY, Lye ZN, Groen SC, Dai XG, Rughani P, Zaaijer S, Harrington ED, Juul S, Purugganan MD (2020). Nanopore sequencing-based genome assembly and evolutionary genomics of circum-basmati rice. Genome Biol 21, 21. |
[11] | Choi JY, Platts AE, Fuller DQ, Hsing YI, Wing RA, Purugganan MD (2017). The rice paradox: multiple origins but single domestication in Asian rice. Mol Biol Evol 34, 969-979. |
[12] | Grillo MA, Li CB, Fowlkes AM, Briggeman TM, Zhou AL, Schemske DW, Sang T (2009). Genetic architecture for the adaptive origin of annual wild rice, Oryza nivala. Evolution 63, 870-883. |
[13] | Gross BL, Zhao ZJ (2014). Archaeological and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci USA 111, 6190-6197. |
[14] | Huang XH, Kurata N, Wei XH, Wang ZX, Wang AH, Zhao Q, Zhao Y, Liu KY, Lu HY, Li WJ, Guo YL, Lu YQ, Zhou CC, Fan DL, Weng QJ, Zhu CR, Huang T, Zhang L, Wang YC, Feng L, Furuumi H, Kubo T, Miyabayashi T, Yuan XP, Xu Q, Dong GJ, Zhan QL, Li CY, Fujiyama A, Toyoda A, Lu TT, Feng Q, Qian Q, Li JY, Han B (2012). A map of rice genome variation reveals the origin of cultivated rice. Nature 490, 497-501. |
[15] | Huang XZ, Qian Q, Liu ZB, Sun HY, He SY, Luo D, Xia GM, Chu CC, Li JY, Fu XD (2009). Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41, 494-497. |
[16] | Huang Y, Bai XF, Luo MF, Xing YZ (2019). Short Panicle 3 controls panicle architecture by upregulating APO2/RFL and increasing cytokinin content in rice. J Integr Plant Biol 61, 987-999. |
[17] | Ishii T, Numaguchi K, Miura K, Yoshida K, Thanh PT, Htun TM, Yamasaki M, Komeda N, Matsumoto T, Terauchi R, Ishikawa R, Ashikari M (2013). OsLG1 regulates a closed panicle trait in domesticated rice. Nat Genet 45, 462-465. |
[18] | Komatsu K, Maekawa M, Ujiie S, Satake Y, Furutani I, Okamoto H, Shimamoto K, Kyozuka J (2003). LAX and SPA: major regulators of shoot branching in rice. Proc Natl Acad Sci USA 100, 11765-11770. |
[19] | Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018). MEGA X: Molecular Evolutionary Genetics Analysis ac-ross computing platforms. Mol Biol Evol 35, 1547-1549. |
[20] | Lee J, Park JJ, Kim SL, Yim J, An G (2007). Mutations in the rice liguleless gene result in a complete loss of the auricle, ligule, and laminar joint. Plant Mol Biol 65, 487-499. |
[21] | Léran S, Varala K, Boyer JC, Chiurazzi M, Crawford N, Daniel-Vedele F, David L, Dickstein R, Fernandez E, Forde B, Gassmann W, Geiger D, Gojon A, Gong JM, Halkier BA, Harris JM, Hedrich R, Limami AM, Rentsch D, Seo M, Tsay YF, Zhang MY, Coruzzi G, Lacombe B (2014). A unified nomenclature of NITRATE TRANSPORTER 1/PEPTIDE TRANSPORTER family members in plants. Trends Plant Sci 19, 5-9. |
[22] | Li F, Liu WB, Tang JY, Chen JF, Tong HN, Hu B, Li CL, Fang J, Chen MS, Chu CC (2010). Rice DENSE AND ERECT PANICLE 2 is essential for determining panicle outgrowth and elongation. Cell Res 20, 838-849. |
[23] | Li SB, Qian Q, Fu ZM, Zeng DL, Meng XB, Kyozuka J, Maekawa M, Zhu XD, Zhang J, Li JY, Wang YH (2009). Short panicle1 encodes a putative PTR family transporter and determines rice panicle size. Plant J 58, 592-605. |
[24] | Liu TM, Li LZ, Zhang YS, Xu CG, Li XH, Xing YZ (2011). Comparison of quantitative trait loci for rice yield, panicle length and spikelet density across three connected populations. J Genet 90, 377-382. |
[25] | Mao LF, Chen MH, Chu QJ, Jia L, Sultana MH, Wu DY, Kong XD, Qiu J, Ye CY, Zhu QH, Chen X, Fan LJ (2019). RiceRelativesGD: a genomic database of rice relatives for rice research. Database 2019, baz110. |
[26] | Molina J, Sikora M, Garud N, Flowers JM, Rubinstein S, Reynolds A, Huang P, Jackson S, Schaal BA, Bustamante CD, Boyko AR, Purugganan MD (2011). Molecular evidence for a single evolutionary origin of domesticated rice. Proc Natl Acad Sci USA 108, 8351-8356. |
[27] | Nakagawa M, Shimamoto K, Kyozuka J (2002). Overexpression of RCN1 and RCN2, rice TERMINAL FLOWER 1/CENTRORADIALIS homologs, confers delay of phase transition and altered panicle morphology in rice. Plant J 29, 743-750. |
[28] | Peng H, Wang K, Chen Z, Cao YH, Gao Q, Li Y, Li XX, Lu HW, Du HL, Lu M, Yang X, Liang CZ (2020). MBKbase for rice: an integrated omics knowledgebase for molecular breeding in rice. Nucleic Acids Res 48, D1085-D1092. |
[29] | Piao RH, Jiang WZ, Ham TH, Choi MS, Qiao YL, Chu SH, Park JH, Woo MO, Jin ZX, An G, Lee J, Koh HJ (2009). Map-based cloning of the ERECT PANICLE 3 gene in rice. Theor Appl Genet 119, 1497-1506. |
[30] | Qiao YL, Piao RH, Shi JX, Lee SI, Jiang WZ, Kim BK, Lee J, Han LZ, Ma WB, Koh HJ (2011). Fine mapping and candidate gene analysis of Dense and Erect Panicle 3, DEP3, which confers high grain yield in rice (Oryza sativa L.). Theor Appl Genet 122, 1439-1449. |
[31] | Tabuchi H, Zhang Y, Hattori S, Omae M, Shimizu-sato S, Oikawa T, Qian Q, Nishimura M, Kitano H, Xie H, Fang XH, Yoshida H, Kyozuka J, Chen F, Sato Y (2011). LAX PANICLE2 of rice encodes a novel nuclear protein and regulates the formation of axillary meristems. Plant Cell 23, 3276-3287. |
[32] | Vaughan DA, Morishima H, Kadowaki K (2003). Diversity in the Oryza genus. Curr Opin Plant Biol 6, 139-146. |
[33] | Wu YZ, Fu YC, Zhao SS, Gu P, Zhu ZF, Sun CQ, Tan LB (2016). CLUSTERED PRIMARY BRANCH 1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol J 14, 377-386. |
[34] | Yan CJ, Zhou JH, Yan S, Chen F, Yeboah M, Tang SZ, Liang GH, Gu MH (2007). Identification and characterization of a major QTL responsible for erect panicle trait in japonica rice (Oryza sativa L.). Theor Appl Genet 115, 1093-1100. |
[35] | Yoshida A, Sasao M, Yasuno N, Takagi K, Daimon Y, Chen RH, Yamazaki R, Tokunaga H, Kitaguchi Y, Sato Y, Nagamura Y, Ushijima T, Kumamaru T, Iida S, Maekawa M, Kyozuka J (2013). TAWAWA1, a regulator of rice inflorescence architecture, functions through the suppression of meristem phase transition. Proc Natl Acad Sci USA 110, 767-772. |
[36] | Yu HY, Murchie EH, González-carranza ZH, Pyke KA, Roberts JA (2015). Decreased photosynthesis in the erect panicle 3 (ep3) mutant of rice is associated with reduced stomatal conductance and attenuated guard cell development. J Exp Bot 66, 1543-1552. |
[37] | Zhou Y, Zhu JY, Li ZY, Yi CD, Liu J, Zhang HG, Tang SZ, Gu MH, Liang GH (2009). Deletion in a quantitative trait gene qPE9-1 associated with panicle erectness improves plant architecture during rice domestication. Genetics 183, 315-324. |
[38] | Zhu ZF, Tan LB, Fu YC, Liu FX, Cai HW, Xie DX, Wu F, Wu JZ, Matsumoto T, Sun CQ (2013). Genetic control of inflorescence architecture during rice domestication. Nat Commun 4, 2200. |
/
〈 | 〉 |