热点评述

植物适应土壤氮素环境的基因选择: 以水稻为例

展开
  • 南京农业大学资源与环境科学学院, 作物遗传与种质创新国家重点实验室, 南京 210095
E-mail: ghxu@njau.edu.cn

收稿日期: 2020-12-25

  录用日期: 2020-12-29

  网络出版日期: 2021-01-06

基金资助

国家自然科学基金(31930101)

Genomic Basis of Rice Adaptation to Soil Nitrogen Status

Expand
  • State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China

Received date: 2020-12-25

  Accepted date: 2020-12-29

  Online published: 2021-01-06

摘要

在农业生产过程中, 施用无机氮肥是提高作物产量的基础, 但氮肥过量施加对生态系统和植物发育进程均会产生不利影响。因此, 提高作物氮素利用效率是农业可持续发展的关键。目前, 对重要粮食作物水稻(Oryza sativa)的氮高效研究取得了一系列重要进展, 并克隆到多个调控氮素吸收、转运和代谢的关键基因。然而, 在不断被人工选育的过程中, 水稻适应土壤不同氮素环境的遗传基础尚不清楚。近日, 中国科学院遗传与发育生物学研究所储成才团队通过评估全球不同生态地理区域的水稻种质资源, 以分蘖数对氮的响应(TRN)为指标进行全基因组关联分析, 鉴定到1个TRN关键负调控基因OsTCP19, 发现其启动子区1个29 bp的核苷酸插入缺失多态性(InDel)变异与品种间的TRN差异密切相关。OsTCP19通过抑制其下游分蘖促进基因DLT转录进而负调控TRN, 而OsTCP19自身的转录活性受氮响应因子OsLBD负调控。OsTCP19的不同等位变异在不同水稻品种中被差异选择并固定, 且与当地土壤含氮量显著相关, 是调控水稻氮素适应性的重要遗传基础。该研究揭示了水稻适应土壤氮素环境变化的分子遗传机制, 为水稻氮素高效利用育种提供了新的遗传资源。

本文引用格式

宣伟, 徐国华 . 植物适应土壤氮素环境的基因选择: 以水稻为例[J]. 植物学报, 2021 , 56(1) : 1 -5 . DOI: 10.11983/CBB20208

Abstract

Crop productivity relies heavily on inorganic nitrogen (N) fertilization, while excess application of N fertilizers results in detrimental effects on ecosystem and plant developmental process. Thus, the improvement of crop N use efficiency (NUE) is critical for the development of sustainable agriculture. Thus far, significant advances in understanding the regulation of NUE have been achieved in rice (Oryza sativa), one of the most important food crops. Several key transporter and regulatory genes involved in N uptake, translocation, and metabolism have been cloned and characterized in rice. However, the genetic mechanisms underlying the geographic adaptation of rice to the change of local soil N status remain elusive. Recently, a team led by Prof. Chengcai Chu, in Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, evaluated the responses to N supplies of rice germplasm resources collected from different eco-geographical regions worldwide. By performing genome-wide association study on rice tillering response to N (TRN), OsTCP19 is identified as a repressor of TRN, and a 29 bp InDel polymorphism in its promoter determines TRN variations among the rice varieties. OsTCP19 regulates TRN by inhibiting the transcription of DLT, a tiller-promoting gene, whilst the transcription of OsTCP19 itself is controlled by a N responsive suppressor LATERAL ORGAN BOUNDARIES DOMAIN (LBD) protein. Notably, OsTCP19 haplotypes were selected among rice germplasms and correlated with local soil N content. This study not only reveals the genetic basis of geographic adaptation of cultivated rice to the changes of soil N environment, but also provides novel genetic candidates for effective breeding of higher NUE rice cultivars.

参考文献

[1] Fan XR, Tang Z, Tan YW, Zhang Y, Luo BB, Yang M, Lian XM, Shen QR, Miller AJ, Xu GH (2016). Overexpression of a pH-sensitive nitrate transporter in rice increases crop yields. Proc Natl Acad Sci USA 113, 7118-7123.
[2] Gao ZY, Wang YF, Chen G, Zhang AP, Yang SL, Shang LG, Wang DY, Ruan BP, Liu CL, Jiang HZ, Dong GJ, Zhu L, Hu J, Zhang GH, Zeng DL, Guo LB, Xu GH, Teng S, Harberd NP, Qian Q (2019). The indica nitrate reductase gene OsNR2 allele enhances rice yield potential and nitrogen use efficiency. Nat Commun 10, 5207.
[3] Guo JH, Liu XJ, Zhang Y, Shen JL, Han WX, Zhang WF, Christie P, Goulding KWT, Vitousek PM, Zhang FS (2010). Significant acidification in major Chinese crop-lands. Science 327, 1008-1010.
[4] Hu B, Wang W, Ou SJ, Tang JY, Li H, Che RH, Zhang ZH, Chai XY, Wang HR, Wang YQ, Liang CZ, Liu LC, Piao ZZ, Deng QY, Deng K, Xu C, Liang Y, Zhang LH, Li LG, Chu CC (2015). Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat Genet 47, 834-838.
[5] Li S, Tian YH, Wu K, Ye YF, Yu JP, Zhang JQ, Liu Q, Hu MY, Li H, Tong YP, Harberd NP, Fu XD (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 560, 595-600.
[6] Liu YQ, Wang HR, Jiang ZM, Wang W, Xu RN, Wang QH, Zhang ZH, Li AF, Liang Y, Ou SJ, Liu XJ, Cao SY, Tong HN, Wang YH, Zhou F, Liao H, Hu B, Chu CC (2021). Genomic basis of geographical adaptation to soil nitrogen in rice. Nature https://doi.org/10.1038/s41586-020-03091-w.
[7] Stevens CJ (2019). Nitrogen in the environment. Science 363, 578-580.
[8] Sun HY, Qian Q, Wu K, Luo JJ, Wang SS, Zhang CW, Ma YF, Liu Q, Huang XZ, Yuan QB, Han RX, Zhao M, Dong GJ, Guo LB, Zhu XD, Gou ZH, Wang W, Wu YJ, Lin HX, Fu XD (2014). Heterotrimeric G protein regulate nitrogen-use efficiency in rice. Nat Genet 46, 652-656.
[9] Tang WJ, Ye J, Yao XM, Zhao PZ, Xuan W, Tian YL, Zhang YY, Xu S, An HZ, Chen GM, Yu J, Wu W, Ge YW, Liu XL, Li J, Zhang HZ, Zhao YQ, Yang B, Jiang XZ, Peng C, Zhou C, Terzaghi W, Wang CM, Wan JM (2019). Genome-wide associated study identifies NAC42- activated nitrate transporter conferring high nitrogen use efficiency in rice. Nat Commun 10, 5279.
[10] Wang Q, Nian JQ, Xie XZ, Yu H, Zhang J, Bai JT, Dong GJ, Hu J, Bai B, Chen LC, Xie QJ, Feng J, Yang XL, Peng JL, Chen F, Qian Q, Li JY, Zuo J (2018). Genetic variations in ARE1 mediate grain yield by modulating nitrogen utilization in rice. Nat Commun 9, 735.
[11] Wang SS, Chen AQ, Xie K, Yang XF, Luo ZZ, Chen JD, Zeng DC, Ren YH, Yang CF, Wang LX, Feng HM, López-Arredondo DL, Herrera-Estrella LR, Xu GH (2020). Functional analysis of the OsNPF4.5 nitrate transporter reveals a conserved mycorrhizal pathway of nitrogen acquisition in plants. Proc Natl Acad Sci USA 117, 16649-16659.
[12] Wu K, Wang SS, Song WZ, Zhang JQ, Wang Y, Liu Q, Yu JP, Ye YF, Li S, Chen JF, Zhao Y, Wang J, Wu XK, Wang MY, Zhang YJ, Liu BM, Wu YJ, Harberd NP, Fu XD (2020). Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367, eaaz2046.
[13] Xu GH, Fan XR, Miller AJ (2012). Plant nitrogen assimilation and use efficiency. Ann Rev Plant Biol 63, 153-182.
[14] Zhang JY, Liu YX, Zhang N, Hu B, Jin T, Xu HR, Qin Y, Yan PX, Zhang XN, Guo XX, Hui J, Cao SY, Wang X, Wang C, Wang H, Qu BY, Fan GY, Yuan LX, Garrido-Oter R, Chu CC, Bai Y (2019). NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37, 676-684.
[15] Zhang S, Zhang Y, Li K, Yan M, Zhang JF, Yu M, Tang S, Wang LY, Qu HY, Luo L, Xuan W, Xu GH (2020). Nitrogen mediates flowering time and nitrogen use efficiency via floral regulators in rice. Curr Biol 31, 1-13.
文章导航

/