生长素通过MAPK介导的超长链脂肪酸合成调控侧根发育
收稿日期: 2020-11-25
录用日期: 2021-01-05
网络出版日期: 2021-01-05
基金资助
国家自然科学基金(32070309)
Auxin Regulates the Lateral Root Development Through MAPK-mediated VLCFAs Biosynthesis
Received date: 2020-11-25
Accepted date: 2021-01-05
Online published: 2021-01-05
促分裂原活化蛋白激酶(MAPK)信号级联通路是真核生物中高度保守的重要信号系统, 通过激酶逐级磷酸化传递并放大上游信号, 进而调控细胞反应。MAPK信号通路不仅介导植物响应环境变化, 而且在调节植物生长发育过程中发挥重要作用。近期, 山东大学丁兆军课题组研究发现, 植物重要激素生长素能够通过激活MPK14调控下游ERF13的磷酸化, 进而影响超长链脂肪酸的合成并调控侧根发育。该研究从全新的角度解析了侧根起始的新机制, 并进一步证实生长素和古老的信号转导模块MAPKs相偶联的分子机制。侧根作为植物响应环境最重要的器官之一, MAPK信号通路在侧根发育过程中的功能解析可为阐明植物如何整合发育和环境信号提供新思路。
黄荣峰, 徐通达 . 生长素通过MAPK介导的超长链脂肪酸合成调控侧根发育[J]. 植物学报, 2021 , 56(1) : 6 -9 . DOI: 10.11983/CBB20190
Mitogen-activated protein kinase (MAPK) cascade is an important and highly conserved cellular signal transduction pathway by delivery and amplification of upstream signals through protein kinase cascade phosphorylation in eukaryotes. In plants, MAPK signaling pathways not only mediate plant responses to environment, but also play crucial roles in regulating plant growth and development. A recent study from the Zhaojun Ding’s group of Shandong University uncovered a novel molecular mechanism of MPK14-mediated auxin signaling in lateral root development via ERF13- regulated very-long-chain fatty acids (VLCFAs) biosynthesis. This study reveals the molecular mechanism of the lateral root development from a new perspective, and further confirms the coupling between the vital phytohormone auxin and the ancient MAPKs module. Since lateral roots act as essential organs for plants in response to environment, deciphering the MAPK signaling pathway in regulation of lateral root development will provide a new strategy for how plants integrate development signals and environmental cues.
Key words: MAPK cascade; auxin; VLCFA; lateral root development
[1] | 黎家, 李传友 (2019). 新中国成立70年来植物激素研究进展. 中国科学: 生命科学 49, 1227-1281. |
[2] | Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc'h A, Carnero E, Giraudat-Pautot V, Rech P, Chriqui D (2009). Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57, 626-644. |
[3] | Bach L, Faure JD (2010). Role of very-long-chain fatty acids in plant development, when chain length does matter. Comptes Rendus Biologies 333, 361-370. |
[4] | Bach L, Gissot L, Marion J, Tellier F, Moreau P, Satiat-Jeunema?tre B, Palauqui JC, Napier JA, Faure JD (2011). Very-long-chain fatty acids are required for cell plate formation during cytokinesis in Arabidopsis thaliana. J Cell Sci 124, 3223-3234. |
[5] | Che P, Lall S, Howell SH (2007). Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 226, 1183-1194. |
[6] | De Rybel B, Vassileva V, Parizot B, Demeulenaere M, Grunewald W, Audenaert D, Van Campenhout J, Overvoorde P, Jansen L, Vanneste S, M?ller B, Wilson M, Holman T, Van Isterdael G, Brunoud G, Vuylsteke M, Vernoux T, De Veylder L, Inzé D, Weijers D, Bennett MJ, Beeckman T (2010). A novel aux/IAA28 signaling cascade activates GATA23-dependent specification of lateral root founder cell identity. Curr Biol 20, 1697-1706. |
[7] | Goh T, Kasahara H, Mimura T, Kamiya Y, Fukaki H (2012). Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3 -mediated auxin signaling. Philos Trans Roy Soc B: Biol Sci 367, 1461-1468. |
[8] | Hamann T, Benkova E, Baurle I, Kientz M, Jürgens G (2002). The Arabidopsis BODENLOS gene encodes an auxin response protein inhibiting MONOPTEROS-mediated embryo patterning. Genes Dev 16, 1610-1615. |
[9] | He YX, Meng XZ (2020). MAPK signaling: emerging roles in lateral root formation. Trends Plant Sci 25, 126-129. |
[10] | Huang RF, Zheng R, He J, Zhou ZM, Wang JC, Xiong Y, Xu TD (2019). Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proc Natl Acad Sci USA 116, 21285-21290. |
[11] | Lavenus J, Goh T, Roberts I, Guyomarc'h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L (2013). Lateral root development in Arabidopsis: fifty shades of auxin. Trends Plant Sci 18, 450-458. |
[12] | Lee HW, Kim NY, Lee DJ, Kim J (2009). LBD18/ ASL20 regulates lateral root formation in combination with LBD16/ASL18 downstream of ARF7 and ARF19 in Arabidopsis. Plant Physiol 151, 1377-1389. |
[13] | Lv BS, Wei KJ, Hu KQ, Tian T, Zhang F, Yu ZP, Zhang DJ, Su YH, Sang YL, Zhang XS, Ding ZJ (2021). MPK14- mediated auxin signaling controls lateral root development via ERF13-regulated very-long-chain fatty acid biosynthesis. Mol Plant 14, 285-297. |
[14] | Malamy JE, Benfey PN (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development 124, 33-44. |
[15] | Nakagami H, Pitzschke A, Hirt H (2005). Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci 10, 339-346. |
[16] | Péret B, De Rybel B, Casimiro I, Benková E, Swarup R, Laplaze L, Beeckman T, Bennett MJ (2009). Arabidopsis lateral root development: an emerging story. Trends Plant Sci 14, 399-408. |
[17] | Pitzschke A, Schikora A, Hirt H (2009). MAPK cascade signaling networks in plant defence. Curr Opin Plant Biol 12, 421-426. |
[18] | Qin YM, Hu CY, Pang Y, Kastaniotis AJ, Hiltunen JK, Zhu YX (2007). Saturated very-long-chain fatty acids promote cotton fiber and Arabidopsis cell elongation by activating ethylene biosynthesis. Plant Cell 19, 3692-3704. |
[19] | Roudier F, Gissot L, Beaudoin F, Haslam R, Michaelson L, Marion J, Molino D, Lima A, Bach L, Morin H, Tellier F, Palauqui JC, Bellec Y, Renne C, Miquel M, DaCosta M, Vignard J, Rochat C, Markham JE, Moreau P, Napier J, Faure JD (2010). Very-long-chain fatty acids are involved in polar auxin transport and developmental patterning in Arabidopsis. Plant Cell 22, 364-375. |
[20] | Seo PJ, Park CM (2011). Cuticular wax biosynthesis as a way of inducing drought resistance. Plant Signal Behav 6, 1043-1045. |
[21] | Shang BS, Xu CY, Zhang XX, Cao HF, Xin W, Hu YX (2016). Very-long-chain fatty acids restrict regeneration capacity by confining pericycle competence for callus formation in Arabidopsis. Proc Natl Acad Sci USA 113, 5101-5106. |
[22] | Smirnova A, Leide J, Riederer M (2013). Deficiency in a very-long-chain fatty acid β-ketoacyl-coenzyme a synthase of tomato impairs microgametogenesis and causes floral organ fusion. Plant Physiol 161, 196-209. |
[23] | Sugimoto K, Jiao YL, Meyerowitz EM (2010). Arabidopsis regeneration from multiple tissues occurs via a root development pathway. Dev Cell 18, 463-471. |
[24] | Xu J, Zhang SQ (2015). Mitogen-activated protein kinase cascades in signaling plant growth and development. Trends Plant Sci 20, 56-64. |
[25] | Zhu QK, Shao YM, Ge ST, Zhang MM, Zhang TS, Hu XT, Liu YD, Walker J, Zhang SQ, Xu J (2019). A MAPK cascade downstream of IDA-HAE/HSL2 ligand-receptor pair in lateral root emergence. Nat Plants 5, 414-423. |
/
〈 | 〉 |