专题论坛

植物微管骨架参与下胚轴伸长调节机制研究进展

展开
  • 沈阳农业大学生物科学技术学院, 沈阳 110866
*E-mail: wangxl100@syau.edu.cn
第一联系人:

共同第一作者。

收稿日期: 2020-10-13

  录用日期: 2020-12-29

  网络出版日期: 2020-12-29

基金资助

国家自然科学基金No(31500208);国家自然科学基金No(31970661);辽宁省“兴辽英才计划”青年拔尖人才No(XLYC1807035);沈阳农业大学博士科研启动经费No(880416029)

Research Advances in the Molecular Mechanisms of Plant Microtubules in Regulating Hypocotyl Elongation

Expand
  • College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
First author contact:

These authors contributed equally to this paper

Received date: 2020-10-13

  Accepted date: 2020-12-29

  Online published: 2020-12-29

摘要

微管作为细胞骨架的重要成员, 在植物生长发育过程中起重要作用。下胚轴作为研究细胞伸长的模式系统之一, 其伸长受到多种信号的调节。该文综述了微管骨架在响应环境和生长发育信号调节下胚轴伸长过程中的作用及机制, 旨在帮助读者深入理解微管骨架响应上游信号在植物下胚轴伸长中的作用机理。

本文引用格式

岳剑茹, 赫云建, 邱天麒, 郭南南, 韩雪萍, 王显玲 . 植物微管骨架参与下胚轴伸长调节机制研究进展[J]. 植物学报, 2021 , 56(3) : 363 -371 . DOI: 10.11983/CBB20170

Abstract

As one of the major members of cytoskeleton, microtubules play important roles in plant growth and deve- lopment. Hypocotyl has become a model system to study cell elongation, which is regulated by multiple internal and ex- ternal signalings. Here, we reviewed the recent research progress for the roles of microtubules in regulating the hypocotyl elongation in response to diversed environmental and developmental cues, which will extend our understanding on how microtubules response to the upstream signal and play roles in the elongation of plant hypocotyls.

参考文献

1 何群, 尤瑞麟 (2004). 应用Steedman’s wax切片法观察植物细胞微管骨架. 植物学通报 21, 547-555.
2 李志刚, 张新成, 林丽, 李素丽, 杨丽涛, 李杨瑞 (2008). 甘蔗茎尖细胞有丝分裂过程中微管骨架的变化. 植物学通报 25, 276-283.
3 Achard P, Liao LL, Jiang CF, Desnos T, Bartlett J, Fu XD, Harberd NP (2007). DELLAs contribute to plant photomorphogenesis. Plant Physiol 143, 1163-1172.
4 Adamowski M, Li LX, Friml J (2019). Reorientation of cortical microtubule arrays in the hypocotyl of Arabidopsis thaliana is induced by the cell growth process and independent of auxin signaling. Int J Mol Sci 20, 3337.
5 Alabadí D, Gallego-Bartolomé J, Orlando L, García- Cárcel L, Rubio V, Martínez C, Frigerio M, Iglesias-Pedraz JM, Espinosa A, Deng XW, Blázquez MA (2008). Gibberellins modulate light signaling pathways to prevent Arabidopsis seedling de-etiolation in darkness. Plant J 53, 324-335.
6 Ambrose JC, Shoji T, Kotzer AM, Pighin JA, Wasteneys GO (2007). The Arabidopsis CLASP gene encodes a microtubule-associated protein involved in cell expansion and division. Plant Cell 19, 2763-2775.
7 Baskin TI, Beemster GTS, Judy-March JE, Marga F (2004). Disorganization of cortical microtubules stimulates tangential expansion and reduces the uniformity of cellulose microfibril alignment among cells in the root of Ara- bidopsis. Plant Physiol 135, 2279-2290.
8 Bleecker AB, Estelle MA, Somerville C, Kende H (1988). Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241, 1086-1089.
9 Chen X, Grandont L, Li HJ, Hauschild R, Paque S, Abuzeineh A, Rakusová H, Benkova E, Perrot-Re- chenmann C, Friml J (2014). Inhibition of cell expansion by rapid ABP1-mediated auxin effect on microtubules. Na- ture 516, 90-93.
10 Chory J, Nagpal P, Peto CA (1991). Phenotypic and genetic analysis of det2, a new mutant that affects light- regulated seedling development in Arabidopsis. Plant Cell 3, 445-459.
11 Clouse SD (2011). Brassinosteroid signal transduction: from receptor kinase activation to transcriptional networks regulating plant development. Plant Cell 23, 1219-1230.
12 Cowling RJ, Harberd NP (1999). Gibberellins control Arabidopsis hypocotyl growth via regulation of cellular elongation. J Exp Bot 50, 1351-1357.
13 de Grauwe L, Vandenbussche F, Tietz O, Palme K, van der Straeten D (2005). Auxin, ethylene and brassinos-teroids: tripartite control of growth in theArabidopsis hy- pocotyl. Plant Cell Physiol 46, 827-836.
14 De Lucas M, Davière JM, Rodríguez-Falcón M, Pontin M, Iglesias-Pedraz JM, Lorrain S, Fankhauser C, Blázquez MA, Titarenko E, Prat S (2008). A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480-484.
15 Duek PD, Fankhauser C (2005). bHLH class transcription factors take centre stage in phytochrome signaling. Trends Plant Sci 10, 51-54.
16 Ehrhardt DW, Shaw SL (2006). Microtubule dynamics and organization in the plant cortical array. Annu Rev Plant Biol 57, 859-875.
17 Feng SH, Martinez C, Gusmaroli G, Wang Y, Zhou JL, Wang F, Chen LY, Yu L, Iglesias-Pedraz JM, Kircher S, Sch?fer E, Fu XD, Fan LM, Deng XW (2008). Coordi-nated regulation ofArabidopsis thaliana development by light and gibberellins. Nature 451, 475-479.
18 Fischer K, Schopfer P (1997). Interaction of auxin, light, and mechanical stress in orienting microtubules in relation to tropic curvature in the epidermis of maize coleoptiles. Protoplasma 196, 108-116.
19 Friml J, Wi?niewska J, Benková E, Mendgen K, Palme K (2002). Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415, 806-809.
20 Furutani I, Watanabe Y, Prieto R, Masukawa M, Suzuki K, Naoi K, Thitamadee S, Shikanai T, Hashimoto T (2000). The SPIRAL genes are required for directional control of cell elongation in Arabidopsis thaliana. Deve- lopment 127, 4443-4453.
21 Gendreau E, Traas J, Desnos T, Grandjean O, Caboche M, H?fte H (1997). Cellular basis of hypocotyl growth in Arabidopsis thaliana. Plant Physiol 114, 295-305.
22 Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998). High temperature promotes auxin-mediated hy-pocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95, 7197-7202.
23 Gudesblat GE, Russinova E (2011). Plants grow on bras-sinosteroids. Curr Opin Plant Biol 14, 530-537.
24 Harberd NP, Bel?eld E, Yasumura Y (2009). The angio- sperm gibberellin-GID1-DELLA growth regulatory mecha-nism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell 21, 1328-1339.
26 Hashimoto T (2003). Dynamics and regulation of plant interphase microtubules: a comparative view. Curr Opin Plant Biol 6, 568-576.
27 Hashimoto T, Kato T (2006). Cortical control of plant microtubules. Curr Opin Plant Biol 9, 5-11.
28 Jensen PJ, Hangarter RP, Estelle M (1998). Auxin transport is required for hypocotyl elongation in light-grown but not dark-grownArabidopsis. Plant Physiol 116, 455-462.
29 Kim SY, Kim BH, Lim CJ, Lim CO, Nam KH (2010). Constitutive activation of stress-inducible genes in a brassinosteroid-insensitive 1(bri1) mutant results in higher tolerance to cold. Physiol Plant 138, 191-204.
30 Kim TW, Wang ZY (2010). Brassinosteroid signal transduc-tion from receptor kinases to transcription factors. Annu Rev Plant Biol 61, 681-704.
31 Kost B, Chua NH (2002). The plant cytoskeleton: vacuoles and cell walls make the difference. Cell 108, 9-12.
32 Le J, Vandenbussche F, de Cnodder T, van der Straeten D, Verbelen JP (2005). Cell elongation and microtubule behavior in the Arabidopsis hypocotyl: responses to ethy- lene and auxin. J Plant Growth Regul 24, 166-178.
33 Li JJ, Wang XL, Qin T, Zhang Y, Liu XM, Sun JB, Zhou Y, Zhu L, Zhang ZD, Yuan M, Mao TL (2011). MDP25, a novel calcium regulatory protein, mediates hypocotyl cell elongation by destabilizing cortical microtubules in Ara- bidopsis. Plant Cell 23, 4411-4427.
34 Li L, Ye HX, Guo HQ, Yin YH (2010). Arabidopsis IWS1 interacts with transcription factor BES1 and is involved in plant steroid hormone brassinosteroid regulated gene expression. Proc Natl Acad Sci USA 107, 3918-3923.
35 Lian N, Liu XM, Wang XH, Zhou YY, Li H, Li JG, Mao TL (2017). COP1 mediates dark-specific degradation of micro- tubule-associated protein WDL3 in regulating Arabidopsis hypocotyl elongation. Proc Natl Acad Sci USA 114, 12321-12326.
36 Lindeboom JJ, Nakamura M, Hibbel A, Shundyak K, Gutierrez R, Ketelaar T, Emons AMC, Mulder BM, Kirik V, Ehrhardt DW (2013). A mechanism for reorientation of cortical microtubule arrays driven by microtubule seve- ring. Science 342, 1245533.
37 Lindeboom JJ, Nakamura M, Saltini M, Hibbel A, Walia A, Ketelaar T, Emons AMC, Sedbrook JC, Kirik V, Mulder BM, Ehrhardt DW (2019). CLASP stabilization of plus ends created by severing promotes microtubule creation and reorientation. J Cell Biol 218, 190-205.
38 Liu XM, Qin T, Ma QQ, Sun JB, Liu ZQ, Yuan M, Mao TL (2013). Light-regulated hypocotyl elongation involves proteasome-dependent degradation of the microtubule regulatory protein WDL3 in Arabidopsis. Plant Cell 25, 1740-1755.
39 Lloyd C, Chan J (2004). Microtubules and the shape of plants to come. Nat Rev Mol Cell Biol 5, 13-23.
40 Ma QQ, Wang XH, Sun JB, Mao TL (2018). Coordinated regulation of hypocotyl cell elongation by light and ethy- lene through a microtubule destabilizing protein. Plant Phy- siol 176, 678-690.
41 Margolis RL, Wilson L (1981). Microtubule treadmills— possible molecular machinery. Nature 293, 705-711.
42 Mitchison T, Kirschner M (1984). Dynamic instability of microtubule growth. Nature 312, 237-242.
43 Nakajima K, Furutani I, Tachimoto H, Matsubara H, Hashimoto T (2004). SPIRAL1 encodes a plant-specific microtubule-localized protein required for directional control of rapidly expanding Arabidopsis cells. Plant Cell 16, 1178-1190.
44 Nakajima K, Kawamura T, Hashimoto T (2006). Role of the SPIRAL1 gene family in anisotropic growth of Arabi-dopsis thaliana. Plant Cell Physiol 47, 513-522.
45 Peng JR, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997). The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11, 3194-3205.
46 Reid JB, Botwright NA, Smith JJ, O’Neill DP, Kerckhoffs LHJ (2002). Control of gibberellin levels and gene expres- sion during de-etiolation in pea. Plant Physiol 128, 734-741.
47 Romano CP, Robson PRH, Smith H, Estelle M, Klee H (1995). Transgene-mediated auxin overproduction in Ara- bidopsis: hypocotyl elongation phenotype and interactions with the hy6-1 hypocotyl elongation and axr1 auxin-resis tant mutants. Plant Mol Biol 27, 1071-1083.
48 Sambade A, Pratap A, Buschmann H, Morris RJ, Lloyd C (2012). The influence of light on microtubule dynamics and alignment in the Arabidopsis hypocotyl. Plant Cell 24, 192-201.
49 Sauret-Güeto S, Calder G, Harberd NP (2012). Transient gibberellin application promotes Arabidopsis thaliana hypocotyl cell elongation without maintaining transverse o- rientation of microtubules on the outer tangential wall of epidermal cells. Plant J 69, 628-639.
50 Shibaoka H (1974). Involvement of wall microtubules in gibberellin promotion and kinetin inhibition of stem elongation. Plant Cell Physiol 15, 255-263.
51 Shibaoka H (1993). Regulation by gibberellins of the orientation of cortical microtubules in plant cells. Aust J Plant Physiol 20, 461-470.
52 Silverstone AL, Ciampaglio CN, Sun TP (1998). The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 155-169.
53 Smalle J, Haegman M, Kurepa J, van Montagu M, Straeten DVD (1997). Ethylene can stimulate Arabidopsis hypocotyl elongation in the light. Proc Natl Acad Sci USA 94, 2756-2761.
54 Soga K, Yamaguchi A, Kotake T, Wakabayashi K, Hoson T (2010). Transient increase in the levels of γ-tubulin complex and katanin are responsible for reorientation by ethylene and hypergravity of cortical microtubules. Plant Signal Behav 5, 1480-1482.
55 Sun JB, Ma QQ, Mao TL (2015). Ethylene regulates the Arabidopsis microtubule-associated protein WAVE-DAM- PENED2-LIKE5 in etiolated hypocotyl elongation. Plant Physiol 169, 325-337.
56 Tang WQ, Kim TW, Oses-Prieto JA, Sun Y, Deng ZP, Zhu SW, Wang RJ, Burlingame AL, Wang ZY (2008). BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321, 557-560.
57 Thitamadee S, Tuchihara K, Hashimoto T (2002). Microtubule basis for left-handed helical growth inArabidopsis. Nature 417, 193-196.
58 True JH, Shaw SL (2020). Exogenous auxin induces trans- verse microtubule arrays through TRANSPORT INHIBI-TOR RESPONSE1/AUXIN SIGNALING F-BOX receptors. Plant Physiol 182, 892-907.
59 van der Graaff E, Nussbaumer C, Keller B (2003). The Arabidopsis thaliana rlp mutations revert the ectopic leaf blade formation conferred by activation tagging of the LEP gene. Mol Genet Genomics 270, 243-252.
60 Vineyard L, Elliott A, Dhingra S, Lucas JR, Shaw SL (2013). Progressive transverse microtubule array organization in hormone-induced Arabidopsis hypocotyl cells. Plant Cell 25, 662-676.
61 Wang CF, Liu WW, Wang GD, Li J, Dong L, Han LB, Wang Q, Tian J, Yu YJ, Gao CX, Kong ZS (2017). KTN80 confers precision to microtubule severing by specific targeting of Katanin complexes in plant cells. EMBO J 36, 3435-3447.
62 Wang XF, Mao TL (2019). Understanding the functions and mechanisms of plant cytoskeleton in response to environmental signals. Curr Opin Plant Biol 52, 86-96.
63 Wang XL, Zhang J, Yuan M, Ehrhardt DW, Wang ZY, Mao TL (2012). Arabidopsis microtubule destabilizing protein40 is involved in brassinosteroid regulation of hypocotyl elongation. Plant Cell 24, 4012-4025.
64 Wang ZY, Seto H, Fujioka S, Yoshida S, Chory J (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 410, 380-383.
65 Ye HX, Li L, Yin YH (2011). Recent advances in the regulation of brassinosteroid signaling and biosynthesis pathways. J Integr Plant Biol 53, 455-468.
66 Yu YW, Wang J, Zhang ZJ, Quan RD, Zhang HW, Deng XW, Ma LG, Huang RF (2013). Ethylene promotes hypocotyl growth and HY5 degradation by enhancing the movement of COP1 to the nucleus in the light. PLoS Ge- net 9, e1004025.
67 Zhao YD, Christensen SK, Fankhauser C, Cashman JR, Cohen JD, Weigel D, Chory J (2001). A role for flavin monooxygenase-like enzymes in auxin biosynthesis. Science 291, 306-309.
68 Zhong SW, Shi H, Xue C, Wang L, Xi YP, Li JG, Quail PH, Deng XW, Guo HW (2012). A molecular framework of light-controlled phytohormone action in Arabidopsis. Curr Biol 22, 1530-1535.
文章导航

/