研究报告

水稻根分泌激素调节生长速度

展开
  • 浙江师范大学化学与生命科学学院, 金华 321004

收稿日期: 2020-07-26

  录用日期: 2020-12-07

  网络出版日期: 2020-12-29

基金资助

国家自然科学基金(31670277);国家自然科学基金(31470370)

Regulation of Rice Growth by Root-secreted Phytohormones

Expand
  • College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, China

Received date: 2020-07-26

  Accepted date: 2020-12-07

  Online published: 2020-12-29

摘要

植物激素是植物体内合成的一类重要小分子物质, 其含量可因外界条件变化而改变, 并作为信号物质调控植物生长发育和适应环境。水培所用介质体积过小会造成植物生长受限、植株矮小, 通常认为是小体积生长介质中营养成分不足所致。研究表明, 在不同体积且不含任何营养物质的纯水中培养的水稻(Oryza sativa)亦表现出不同的生长速度, 幼苗在小体积水中生长缓慢而在大体积水中则生长快速且健壮。用液相色谱-质谱(LC-MS)测定培养液和水稻幼苗的激素含量, 发现相比于大体积培养条件, 小体积培养液中的植物体内积累了较多的ABA、SA和JA-Ile等胁迫相关激素, 最终导致幼苗生长缓慢和生物量积累减少。结果表明植物可能通过感知根际激素浓度来预测外界水量限制, 并据此调节生长速度, 以最大限度地适应外界环境。研究结果对揭示根分泌激素的生理功能以及优化植物工厂的水培条件具有借鉴意义。

本文引用格式

俞启璐, 赵江哲, 朱晓仙, 张可伟 . 水稻根分泌激素调节生长速度[J]. 植物学报, 2021 , 56(2) : 175 -182 . DOI: 10.11983/CBB20133

Abstract

The phytohormones are important small molecules synthesized in plants, and their contents change as the external and internal conditions vary. Small volume of growth media used in the hydroculture will restrict the growth of plants, which is generally thought to be caused by the shortage of nutrients. In this study, we found that rice seedlings grew faster in the large volume of water culture system than that in the small volume of water culture system. We measured the contents of different plant hormones in culture medium and rice seedlings using liquid chromatography-mass spectrum (LC-MS). It was found that there were more stress-response related phytohormones such as ABA, SA and JA-Ile accumulated in the plants growing in the small volume water system than that in the large volume water system, and finally resulted in a low growth rate and a biomass decline. Therefore, we speculate that plants can sense the water resource through actively sensing the concentration of root-secreted phytohormones, and adjust growth and development to better adapt to the environment. The study will help to understand the physiological functions of root-secreted phytohormones and optimize the hydroculture conditions in the area of plant factory.

参考文献

[1] 程立超, 曾令鑫 (2020). 不同水培条件绿萝生长状况研究. 中国林副特产 (1),24-26, 30.
[2] 代宇佳, 罗晓峰, 周文冠, 陈锋, 帅海威, 杨文钰, 舒凯 (2019). 生物和非生物逆境胁迫下的植物系统信号. 植物学报 54,255-264.
[3] 甘林, 代玉立, 杨秀娟, 杜宜新, 石妞妞, 阮宏椿, 陈福如 (2020). 香蕉抗(感)病品种根系分泌物对枯萎病菌和枯草芽孢杆菌的生物效应. 应用生态学报 31,2279-2286.
[4] 洪常青, 聂艳丽 (2003). 根系分泌物及其在植物营养中的作用. 生态环境 12,508-511.
[5] 梁银丽, 康绍忠, 张成娥 (1999). 不同水分条件下小麦生长特性及氮磷营养的调节作用. 干旱地区农业研究 17(4),58-64.
[6] 罗晓蔓, 周书宇, 杨雪 (2019). 植物根系分泌物的分类和作用. 安徽农业科学 47(4),37-39, 45.
[7] 任伟, 高慧娟, 王润娟, 吕昕培, 何傲蕾, 邵坤仲, 汪永平, 张金林 (2020). 高等植物适应干旱生境研究进展. 草学 (3),4-15.
[8] 孙珂, 周亚峰, 黄雅敏, 李会松, 孔倩倩 (2020). 果菜类蔬菜水培研究进展. 农业科技通讯 (3),25-27.
[9] 岳杨, 曹世文, 王颖 (2010). 辽河下游平原区淹灌条件下水稻的需水规律. 东北水利水电 (2),58-59.
[10] 张奇, 张清旭, 庞晓敏, 叶江华, 王海斌, 贾小丽, 何海斌 (2020). 稗草根系分泌物对水稻种子萌发和苗期生长的影响. 亚热带农业研究 16,8-15.
[11] 张瑜, 刘玉红, 扎西顿珠, 杨亚辉, 代安国 (2020). 不同营养液浓度对水培生菜生长的影响. 西藏农业科技 42,54-56.
[12] Albrecht T, Argueso CT (2017). Should I fight or should I grow now? The role of cytokinins in plant growth and immunity and in the growth-defence trade-off. Ann Bot 119,725-735.
[13] Bandurska H, Niedziela J, Pietrowska-Borek M, Nuc K, Chadzinikolau T, Radzikowska D (2017). Regulation of proline biosynthesis and resistance to drought stress in two barley ( Hordeum vulgare L.) genotypes of different origin. Plant Physiol Biochem 118,427-437.
[14] Bhaskara GB, Nguyen TT, Verslues PE (2012). Unique drought resistance functions of the highly ABA-induced clade A protein phosphatase 2Cs. Plant Physiol 160,379-395.
[15] Bielach A, Hrtyan M, Tognetti VB (2017). Plants under stress: involvement of auxin and cytokinin. Int J Mol Sci 18,1427.
[16] Cortleven A, Leuendorf JE, Frank M, Pezzetta D, Bolt S, Schmülling T (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell Environ 42,998-1018.
[17] Fang YJ, Xiong LZ (2015). General mechanisms of drought response and their application in drought resistance improvement in plants. Cell Mol Life Sci 72,673-689.
[18] Gargallo-Garriga A, Preece C, Sardans J, Oravec M, Urban O, Pe?uelas J (2018). Root exudate metabolomes change under drought and show limited capacity for recovery. Sci Rep 8,12696.
[19] Hu HH, Xiong LZ (2014). Genetic engineering and breeding of drought-resistant crops. Annu Rev Plant Biol 65,715- 741.
[20] Huang JL, Zhai JQ, Jiang T, Wang YJ, Li XC, Wang R, Xiong M, Su BD, Thomas F (2018). Analysis of future drought characteristics in China using the regional climate model CCLM. Climate Dyn 50,507-525.
[21] Kramer PJ (1983). Water Relation of Plant. New York: Academic Press. pp.168-191.
[22] Luo J, Zhou JJ, Zhang JZ (2018). Aux/ IAA gene family in plants: molecular structure, regulation, and function. Int J Mol Sci 19,259.
[23] Mohammadian MA, Watling JR, Hill RS (2007). The impact of epicuticular wax on gas-exchange and photoinhibition in Leucadendron lanigerum (Proteaceae). Acta Oecol 31,93-101.
[24] North GB, Nobel PS (1992). Drought-induced changes in hydraulic conductivity and structure in roots of Ferocactus acanthodes and Opuntia ficus-indica. New Phytol 120,9-19.
[25] Ruan JJ, Zhou YX, Zhou ML, Yan J, Khurshid M, Weng WF, Cheng JP, Zhang KX (2019). Jasmonic acid signaling pathway in plants. Int J Mol Sci 20,2479.
[26] Seki M, Umezawa T, Urano K, Shinozaki K (2007). Regulatory metabolic networks in drought stress responses. Curr Opin Plant Biol 10,296-302.
[27] Shinozaki K, Yamaguchi-Shinozaki K (1997). Gene expression and signal transduction in water-stress response. Plant Physiol 115,327-334.
[28] Takahashi F, Kuromori T, Sato H, Shinozaki K (2018). Regulatory gene networks in drought stress responses and resistance in plants. Adv Exp Med Biol 1081,189-214.
[29] Tardieu F (2013). Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Front Physiol 4,17.
[30] Valenzuela CE, Acevedo-Acevedo O, Miranda GS, Vergara-Barros P, Holuigue L, Figueroa CR, Figueroa PM (2016). Salt stress response triggers activation of the jasmonate signaling pathway leading to inhibition of cell elongation in Arabidopsis primary root. J Exp Bot 67,4209- 4220.
[31] Verma V, Ravindran P, Kumar PP (2016). Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16,86.
[32] Vives-Peris V, Gómez-Cadenas A, Pérez-Clemente RM (2017). Citrus plants exude proline and phytohormones under abiotic stress conditions. Plant Cell Rep 36, 1971- 1984.
[33] Vlot AC, Dempsey DMA, Klessig DF (2009). Salicylic acid, a multifaceted hormone to combat disease. Annu Rev Phytopathol 47,177-206.
[34] Wybouw B, De Rybel B (2019). Cytokinin—a developing story. Trends Plant Sci 24,177-185.
[35] Xiong LM, Schumaker KS, Zhu JK (2002). Cell signaling during cold, drought, and salt stress. Plant Cell 14,S165- S183.
[36] Zhao JZ, Yu NN, Ju M, Fan B, Zhang YJ, Zhu EG, Zhang MY, Zhang KW (2019). ABC transporter OsABCG18 controls the shootward transport of cytokinins and grain yield in rice. J Exp Bot 70,6277-6291.
[37] Zou JJ, Wei FJ, Wang C, Wu JJ, Ratnasekera D, Liu WX, Wu WH (2010). Arabidopsis calcium-dependent protein kinase CPK10 functions in abscisic acid- and Ca 2+-mediated stomatal regulation in response to drought stress. Plant Physiol 154,1232-1243.
文章导航

/