专题论坛

野生大豆耐逆分子调控机制研究进展

展开
  • 黑龙江八一农垦大学, 作物逆境分子生物学实验室, 大庆 163319

收稿日期: 2020-08-10

  录用日期: 2020-11-24

  网络出版日期: 2020-11-24

基金资助

黑龙江八一农垦大学人才培育计划(ZRCPY201902)

Advances in Molecular Mechanisms of Stress Tolerance in Wild Soybean

Expand
  • Crop Stress Molecular Biology Laboratory, Heilongjiang Bayi Agricultural University, Daqing 163319, China

Received date: 2020-08-10

  Accepted date: 2020-11-24

  Online published: 2020-11-24

摘要

野生大豆(Glycine soja)起源于中国, 是栽培大豆(G. max)的近缘祖先, 逆境适应能力强, 是研究耐逆分子机制和挖掘耐逆关键调控基因的优良材料。该文综述了野生大豆耐逆基因组、转录组和蛋白质组等组学研究进展, 总结了近年来类受体蛋白激酶、转录因子、离子通道和氧化还原在野生大豆耐逆应答中的调控作用及机制, 为耐逆作物新品种培育提供了新思路。

本文引用格式

王研, 贾博为, 孙明哲, 孙晓丽 . 野生大豆耐逆分子调控机制研究进展[J]. 植物学报, 2021 , 56(1) : 104 -115 . DOI: 10.11983/CBB20144

Abstract

Wild soybeans (Glycine soja) originated in China, which was the closest ancestor of soybean. Because of the remarkable adaptability to adverse conditions, wild soybean has become an ideal material for the study of key genes in regulating stress tolerance. In this review, we provided an overview on the genome, transcriptome and proteome of wild soybean in stress tolerance. Meanwhile, we summarized current research progress on the protein kinases, transcription factors, ion channels and redox regulation in response to stress, which will provide new ideas for the cultivation of stress- tolerant crops in the future.

参考文献

[1] 才华, 朱延明, 柏锡, 纪巍, 李勇, 王冬冬, 孙晓丽 (2011a). 野生大豆GsbZIP33基因的分离及胁迫耐性分析. 分子植物育种 9, 397-401.
[2] 才华, 朱延明, 李勇, 柏锡, 纪巍, 王冬冬, 孙晓丽 (2011b). 野生大豆转录因子GsNAC20基因的分离及胁迫耐性分析. 作物学报 37, 1351-1359.
[3] 才晓溪, 沈阳, 周伍红, 贾博为, 孙明哲, 王金玉, 杨珺凯, 李建伟, 孙晓丽 (2018). 大豆CHX基因家族全基因组鉴定与生物信息学分析. 基因组学与应用生物学 37, 5360-5369.
[4] 陈晨, 孙晓丽, 刘艾林, 端木慧子, 于洋, 肖佳雷, 朱延明 (2015). 野生大豆碳酸盐胁迫应答基因GsMIPS2的克隆及功能分析. 作物学报 41, 1343-1352.
[5] 盖钧镒 (2011). 中国大豆产业、科技、种业和转基因育种的思考(I). 大豆科技 ( 3), 1-2.
[6] 盖钧镒, 赵团结 (2001). 中国大豆育种的核心祖先亲本分析. 南京农业大学学报 24(2), 20-23.
[7] 高春艳, 吴芮, 袁玉, 刘同玥, 任莉萍 (2017). 植物AP2/ERF转录因子及其在非生物胁迫应答中的作用. 江汉大学学报(自然科学版) 45, 236-240.
[8] 李换丽, 雷佳, 吴霞, 王新胜, 马燕斌 (2019). 大豆WRKY转录因子及其生物学功能研究进展. 大豆科学 38, 813-820.
[9] 林凡敏, 柏锡, 樊超, 赵超越, 才华, 纪巍, 朱延明 (2013). 转GsGST14耐盐碱基因大豆的农艺性状调查. 大豆科学 32, 56-58.
[10] 刘晶 (2012). GsbZIP33GsCBRLK基因转化肇东苜蓿及其耐盐性分析. 硕士论文. 哈尔滨: 东北农业大学. pp. 1-92.
[11] 罗晓, 曹蕾, 王明超, 胡梦然, 柏锡, 纪巍, 才华, 朱延明 (2012). 野生大豆盐碱胁迫响应基因GsZFP1的克隆及序列分析. 东北农业大学学报 43(4), 20-26.
[12] 孙备, 李建东, 王国骄, 徐亮, 薛静, 韦岩 (2008). 一年生野生大豆(Glycine soja)生理生态学和种群生态学研究进展. 大豆科学 ( 4), 687-692.
[13] 王岩岩, 张永兴, 郭葳, 代文君, 周新安, 矫永庆, 沈欣杰 (2019). 野生大豆转录因子GsWRKY57基因的克隆与抗旱性功能分析. 中国油料作物学报 41, 524-530.
[14] 王臻昱, 才华, 柏锡, 纪巍, 李勇, 魏正巍, 朱延明 (2012). 野生大豆GsGST19基因的克隆及其转基因苜蓿的耐盐碱性分析. 作物学报 38, 971-979.
[15] 魏正巍, 朱延明, 化烨, 才华, 纪巍, 柏锡, 王臻昱, 文益东 (2013). 转GsPPCKI基因苜蓿植株的获得及其耐碱性分析. 作物学报 39, 68-75.
[16] 吴婧, 才华, 柏锡, 纪巍, 魏正巍, 唐立郦, 赵阳, 朱延明 (2014). 转GsGST13/SCMRP基因双价苜蓿的耐盐性分析. 草业学报 23, 257-265.
[17] 夏正俊 (2017). 大豆基因组解析与重要农艺性状基因克隆研究进展. 植物学报 52, 148-158.
[18] 阎文飞, 程凡升, 姜新强, 刘翠霞, 朱丹 (2018). 野大豆盐碱胁迫相关GsTIFY6B基因克隆及表达特性分析. 华北农学报 33(4), 82-89.
[19] 杨光宇, 纪锋 (1999). 中国野生大豆资源的研究与利用综述. I. 地理分布、化学品质性状及在育种中的利用. 吉林农业科学 24, 12-17.
[20] 杨靓, 李翔宇, 高鹏, 陈庆园, 郭玉双 (2012). 野生大豆胁迫应答LRR类受体蛋白激酶基因的克隆及其表达特性分析. 大豆科学 31, 718-724.
[21] 杨楠, 张静, 王磊, 宿红艳 (2017). 肌醇及其代谢关键酶基因与植物逆境响应机制的研究进展. 鲁东大学学报(自然科学版) 33, 321-325, 339.
[22] 张宁 (2015). 碱胁迫下野生大豆叶片蛋白质组的双向电泳分析. 硕士论文. 哈尔滨: 东北农业大学. pp. 1-71.
[23] 张小芳, 王冰冰, 徐燕, 张炜坤, 赵恢, 张锴, 乔亚科, 李桂兰 (2018). PEG模拟干旱胁迫下野生大豆转录组分析. 大豆科学 37, 681-689.
[24] 赵阳, 朱延明, 柏锡, 纪巍, 吴婧, 唐立郦, 才华 (2014). 转GsCBRLK/SCMRP双价基因苜蓿耐碱性及氨基酸含量分析. 作物学报 40, 431-438.
[25] 朱丹, 柏锡, 朱延明, 才华, 李勇, 纪巍, 陈超, 安琳, 朱毅 (2012). 野生大豆盐碱胁迫相关GsTIFY11b的克隆与功能分析. 遗传 34, 230-239.
[26] 朱娉慧, 陈冉冉, 于洋, 宋雪薇, 李慧卿, 杜建英, 李强, 丁晓东, 朱延明 (2017). 碱胁迫相关基因GsWRKY15的克隆及其转基因苜蓿的耐碱性分析. 作物学报 43, 1319-1327.
[27] 朱延明, 于纪洋, 于洋, 段香波, 曹蕾, 陈超 (2019). 野生大豆AP2/RAV亚家族转录因子GsRAV3负调控拟南芥对ABA的敏感性. 东北农业大学学报 50(5), 8-18.
[28] Ali Z, Zhang DY, Xu ZL, Xu L, Yi JX, He XL, Huang YH, Liu XQ, Khan AA, Trethowan RM, Ma HX (2012). Uncovering the salt response of soybean by unraveling its wild and cultivated functional genomes using tag sequencing. PLoS One 7, e48819.
[29] Bai X, Liu J, Tang LL, Cai H, Chen M, Ji W, Liu Y, Zhu YM (2013). Overexpression of GsCBRLK from Glycine soja enhances tolerance to salt stress in transgenic alfalfa (Medicago sativa). Funct Plant Biol 40, 1048-1056.
[30] Bian XH, Li W, Niu CF, Wei W, Hu Y, Han JQ, Lu X, Tao JJ, Jin M, Qin H, Zhou B, Zhang WK, Ma B, Wang GD, Yu DY, Lai YC, Chen SY, Zhang JS (2020). A class B heat shock factor selected for during soybean domestication contributes to salt tolerance by promoting flavonoid biosynthesis. New Phytol 225, 268-283.
[31] Cao L, Yu Y, Ding XD, Zhu D, Yang F, Liu BD, Sun XL, Duan XB, Yin KD, Zhu YM (2017). The Glycine soja NAC transcription factor GsNAC019 mediates the regulation of plant alkaline tolerance and ABA sensitivity. Plant Mol Biol 95, 253-268.
[32] Cao L, Yu Y, Duanmu H, Chen C, Duan XB, Zhu PH, Chen RR, Li Q, Zhu YM, Ding XD (2016). A novel Glycine soja homeodomain-leucine zipper (HD-Zip) I gene, Gshdz4, positively regulates bicarbonate tolerance and responds to osmotic stress in Arabidopsis. BMC Plant Biol 16, 184.
[33] Chen C, Sun XL, Duanmu H, Yu Y, Liu AL, Xiao JL, Zhu YM (2015). Ectopic expression of a Glycine soja myo- inositol oxygenase gene (GsMIOX1a) in Arabidopsis enhances tolerance to alkaline stress. PLoS One 10, e0129-998.
[34] Chen R, Hu Z, Zhang H (2009) Identification of microRNAs in wild soybean (Glycine soja). J Integr Plant Biol 51, 1071-1079.
[35] Duan XB, Yang Y, Zhang Y, Chen C, Duanmu HZ, Cao L, Sun MZ, Sun XL, Zhu YM (2018a). A potential efflux boron transporter gene GsBOR2, positively regulates Arabidopsis bicarbonate tolerance. Plant Sci 274, 284-292.
[36] Duan XB, Yu Y, Duanmu HZ, Chen C, Sun XL, Cao L, Li Q, Ding XD, Liu BD, Zhu YM (2018b). GsSLAH3, a Glycine soja slow type anion channel homolog, positively modulates plant bicarbonate stress tolerance. Physiol Plant 164, 145-162.
[37] Duanmu HZ, Wang Y, Bai X, Cheng SF, Deyholos MK, Wong GKS, Li D, Zhu D, Li R, Yu Y, Cao L, Chen C, Zhu YM (2015). Wild soybean roots depend on specific transcription factors and oxidation reduction related genes in response to alkaline stress. Funct Integr Genomics 15, 651-660.
[38] Ge Y, Li Y, Lv DK, Bai X, Ji W, Cai H, Wang AX, Zhu YM (2011). Alkaline-stress response in Glycine soja leaf identifies specific transcription factors and ABA-mediated signaling factors. Funct Integr Genomics 11, 369-379.
[39] Ge Y, Li Y, Zhu YM, Bai X, Lv DK, Guo DJ, Ji W, Cai H (2010). Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol 10, 153.
[40] Gurung PD, Upadhyay AK, Bhardwaj PK, Sowdhamini R, Ramakrishnan U (2019). Transcriptome analysis reveals plasticity in gene regulation due to environmental cues in Primula sikkimensis, a high altitude plant species. BMC Genomics 20, 989.
[41] Hossain Z, Khatoon A, Komatsu S (2013). Soybean proteomics for unraveling abiotic stress response mechanism. J Proteome Res 12, 4670-4684.
[42] Huda KMK, Yadav S, Akhter Banu MS, Trivedi DK, Tuteja N (2013). Genome-wide analysis of plant-type II Ca2+ ATPases gene family from rice and Arabidopsis: potential role in abiotic stresses. Plant Physiol Biochem 65, 32-47.
[43] Ji W, Cong R, Li S, Li R, Qin ZW, Li YJ, Zhou XL, Chen SX, Li J (2016a). Comparative proteomic analysis of soybean leaves and roots by iTRAQ provides insights into response mechanisms to short-term salt stress. Front Plant Sci 7, 573.
[44] Ji W, Koh J, Li S, Zhu N, Dufresne CP, Zhao XW, Chen SX, Li J (2016b). Quantitative proteomics reveals an important role of GsCBRLK in salt stress response of soybean. Plant Soil 402, 159-178.
[45] Ji W, Li Y, Li J, Dai CH, Wang X, Bai X, Cai H, Yang L, Zhu YM (2006). Generation and analysis of expressed sequence tags from NaCl-treated Glycine soja. BMC Plant Biol 6, 4.
[46] Ji W, Zhu YM, Li Y, Yang L, Zhao XW, Cai H, Bai X (2010). Over-expression of a glutathione S-transferase gene, GsGST, from wild soybean (Glycine soja) enhances drought and salt tolerance in transgenic tobacco. Biotechnol Lett 32, 1173-1179.
[47] Jia BW, Sun MZ, Duanmu HZ, Ding XD, Liu BD, Zhu YM, Sun XL (2017). GsCHX19.3, a member of cation/H+ exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance. Sci Rep 7, 9423.
[48] Jia BW, Sun MZ, Sun XL, Li RT, Wang ZY, Wu J, Wei ZW, Duanmu HZ, Xiao JL, Zhu YM (2016). Overexpression of GsGSTU13 and SCMRP in Medicago sativa confers increased salt-alkaline tolerance and methionine content. Physiol Plant 156, 176-189.
[49] Kim MYK, Lee S, Van K, Kim TH, Jeong SC, Choi IY, Kim DS, Lee YS, Park D, Ma JX, Kim WY, Kim BC, Park S, Lee KA, Kim DH, Kim KH, Shin JH, Jang YE, Kim KD, Liu WX, Chaisan T, Kang YJ, Lee YH, Kim KH, Moon JK, Schmutz J, Jackson SA, Bhak J, Lee SH (2010). Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome. Proc Natl Acad Sci USA 51, 22032-22037.
[50] Lam HM, Xu X, Liu X, Chen WB, Yang GH, Wong FL, Li MW, He WM, Qin N, Wang B, Li J, Jian M, Wang J, Shao GH, Wang J, Sun SSM, Zhang GY (2010). Resequencing of 31 wild and cultivated soybean genomes identifies patterns of genetic diversity and selection. Nat Genet 42, 1053-1059.
[51] Li XJ, Wang Y, Liu F, Pi BY, Zhao TJ, Yu BJ (2020). Transcriptomic analysis of Glycine soja and G. max seedlings and functional characterization of GsGSTU24 and GsGSTU42 genes under submergence stress. Environ Exp Bot 171, 103963.
[52] Li YH, Zhou GY, Ma JX, Jiang WK, Jin LG, Zhang ZH, Guo Y, Zhang JB, Sui Y, Zheng LT, Zhang SS, Zuo QY, Shi XH, Li YF, Zhang WK, Hu YY, Kong GY, Hong HL, Tan B, Song J, Liu ZX, Wang YS, Ruan H, Yeung CKL, Liu J, Wang HL, Zhang LJ, Guan RX, Wang KJ, Li WB, Chen SY, Chang RZ, Jiang Z, Jackson SA, Li RQ, Qiu LJ (2014). De novo assembly of soybean wild relatives for pan-genome analysis of diversity and agronomic traits. Nat Biotechnol 32, 1045-1052.
[53] Liu AL, Yu Y, Duan XB, Sun XL, Duanmu HZ, Zhu YM (2015a). GsSKP21, a Glycine soja S-phase kinase-associated protein, mediates the regulation of plant alkaline tolerance and ABA sensitivity. Plant Mol Biol 87, 111-124.
[54] Liu JY, Chen NN, Grant JN, Cheng ZM, Stewart CN Jr, Hewezi T (2015b). Soybean kinome: functional classification and gene expression patterns. J Exp Bot 66, 1919-1934.
[55] Luo X, Bai X, Zhu D, Li Y, Ji W, Cai H, Wu J, Liu BH, Zhu YM (2012a). GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta 235, 1141-1155.
[56] Luo X, Cui N, Zhu YM, Cao L, Zhai H, Cai H, Ji W, Wang XD, Zhu D, Li Y, Bai X (2012b). Over-expression of GsZFP1, an ABA-responsive C2H2-type zinc finger protein lacking a QALGGH motif, reduces ABA sensitivity and decreases stomata size. J Plant Physiol 169, 1192-1202.
[57] Luo X, Sun XL, Liu BH, Zhu D, Xi B, Cai H, Ji W, Cao L, Wu J, Wang MC, Ding XD, Zhu YM (2013a). Ectopic expression of a WRKY homolog from Glycine soja alters flowering time in Arabidopsis. PLoS One 8, e73295.
[58] Luo X, Xi B, Sun XL, Zhu D, Liu BH, Ji W, Cai H, Cao L, Wu J, Hu MR, Liu X, Tang LL, Zhu YM (2013b). Expression of wild soybean WRKY20 in Arabidopsis enhances drought tolerance and regulates ABA signaling. J Exp Bot 8, 2155-2169.
[59] Pecrix Y, Staton SE, Sallet E, Lelandais-Brière C, Moreau S, Carrère S, Blein T, Jardinaud MF, Latrasse D, Zouine M, Zahm M, Kreplak J, Mayjonade B, Satgé C, Perez M, Cauet S, Marande W, Chantry-Darmon C, Lopez-Roques C, Bouchez O, Bérard A, Debellé F, Mu?os S, Bendahmane A, Bergés H, Niebel A, Buitink J, Frugier F, Benhamed M, Crespi M, Gouzy J, Gamas P (2018). Whole-genome landscape of Medicago truncatula symbiotic genes. Nat Plants 4, 1017-1025.
[60] Pi EX, Qu LQ, Hu JW, Huang YY, Qiu LJ, Lu HF, Jiang B, Liu C, Peng TT, Zhao Y, Wang HZ, Tsai SN, Ngai S, Du LQ (2016). Mechanisms of soybean roots’ tolerances to salinity revealed by proteomic and phosphoproteomic comparisons between two cultivars. Mol Cell Proteomics 15, 266-288.
[61] Qi XP, Li MW, Xie M, Liu X, Ni M, Shao GH, Song C, Kay-Yuen Yim A, Tao Y, Wong FL, Isobe S, Wong CF, Wong KS, Xu CY, Li CQ, Wang Y, Guan R, Sun FM, Fan GY, Xiao ZX, Zhou F, Phang TH, Liu X, Tong SW, Chan TF, Yiu SM, Tabata S, Wang J, Xu X, Lam HM (2014). Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 5, 4340.
[62] Schmutz J, Cannon SB, Schlueter J, Ma JX, Mitros T, Nelson W, Hyten DL, Song QJ, Thelen JJ, Cheng JL, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu SQ, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du JC, Tian ZX, Zhu LC, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010). Genome sequence of the palaeopolyploid soybean. Nature 463, 178-183.
[63] Shen XJ, Wang YY, Zhang YX, Guo W, Jiao YQ, Zhou XA (2018). Overexpression of the wild soybean R2R3-MYB transcription factor GsMYB15 enhances resistance to salt stress and Helicoverpa armigera in transgenic Arabidopsis. Int J Mol Sci 19, 3958.
[64] Sun MZ, Jia BW, Cui N, Wen YD, Duanmu HZ, Yu QY, Xiao JL, Sun XL, Zhu YM (2016a). Functional characterization of a Glycine soja Ca2+ ATPase in salt-alkaline stress responses. Plant Mol Biol 90, 419-434.
[65] Sun MZ, Qian X, Chen C, Cheng SF, Jia BW, Zhu YM, Sun XL (2018). Ectopic expression of GsSRK in Medicago sativa reveals its involvement in plant architecture and salt stress responses. Front Plant Sci 9, 226.
[66] Sun MZ, Shen Y, Yin KD, Guo YX, Cai XX, Yang JK, Zhu YM, Jia BW, Sun XL (2019). A late embryogenesis abundant protein GsPM30 interacts with a receptor like cytoplasmic kinase GsCBRLK and regulates environmental stress responses. Plant Sci 283, 70-82.
[67] Sun MZ, Sun XL, Zhao Y, Zhao CY, Duanmu HZ, Yu Y, Ji W, Zhu YM (2014a). Ectopic expression of GsPPCK3 and SCMRP in Medicago sativa enhances plant alkaline stress tolerance and methionine content. PLoS One 9, e89578.
[68] Sun XL, Cai XX, Yin KD, Gu LW, Shen Y, Hu BS, Wang Y, Chen Y, Zhu YM, Jia BW, Sun MZ (2021). Wild soybean SNARE proteins BET1s mediate the subcellular localization of the cytoplasmic receptor-like kinases CRCK1s to modulate salt stress responses. Plant J 105, 771-785.
[69] Sun XL, Sun MZ, Jia BW, Qin ZW, Yang KJ, Chen C, Yu QY, Zhu YM (2016b). A Glycine soja methionine sulfoxide reductase B5a interacts with the Ca2+/CAM-binding kinase GsCBRLK and activates ROS signaling under carbonate alkaline stress. Plant J 86, 514-529.
[70] Sun XL, Sun MZ, Luo X, Ding XD, Ji W, Cai H, Bai X, Liu XF, Zhu YM (2013a). A Glycine soja ABA-responsive receptor-like cytoplasmic kinase, GsRLCK, positively controls plant tolerance to salt and drought stresses. Planta 237, 1527-1545.
[71] Sun XL, Yang SS, Sun MZ, Wang ST, Ding XD, Zhu D, Ji W, Cai H, Zhao CY, Wang XD, Zhu YM (2014b). A novel Glycine soja cysteine proteinase inhibitor GsCPI14, interacting with the calcium/calmodulin-binding receptor-like kinase GsCBRLK, regulated plant tolerance to alkali stress. Plant Mol Biol 85, 33-48.
[72] Sun XL, Yu QY, Tang LL, Ji W, Bai X, Cai H, Liu XF, Ding XD, Zhu YM (2013b). GsSRK, a G-type lectin S-receptor- like serine/threonine protein kinase, is a positive regulator of plant tolerance to salt stress. J Plant Physiol 170, 505-515.
[73] Tang LL, Cai H, Ji W, Luo X, Wang ZY, Wu J, Wang XD, Cui L, Wang Y, Zhu YM, Bai X (2013). Overexpression of GsZFP1 enhances salt and drought tolerance in transgenic alfalfa (Medicago sativa L.). Plant Physiol Biochem 71, 22-30.
[74] Wang ZY, Song FB, Cai H, Zhu YM, Bai X, Ji W, Li Y, Hua Y (2012). Over-expressing GsGST14 from Glycine soja enhances alkaline tolerance of transgenic Medicago sativa. Biol Plant 56, 516-520.
[75] Wei SS, Wang XY, Jiang D, Dong ST (2018). Physiological and proteome studies of maize (Z ea mays L.) in response to leaf removal under high plant density. BMC Plant Biol 18, 378.
[76] Wu SY, Zhu PH, Jia BW, Yang JK, Shen Y, Cai XX, Sun XL, Zhu YM, Sun MZ (2018). A Glycine soja group S2 bZIP transcription factor GsbZIP67 conferred bicarbonate alkaline tolerance in Medicago sativa. BMC Plant Biol 18, 234.
[77] Xie M, Chung CYL, Li MW, Wong FL, Wang X, Liu AL, Wang ZL, Leung AKY, Wong TH, Tong SW, Xiao ZX, Fan KJ, Ng MS, Qi XP, Yang LF, Deng TQ, He LJ, Chen L, Fu AS, Ding Q, He JX, Chung G, Isobe S, Tanabata T, Valliyodan B, Nguyen HT, Cannon SB, Foyer CH, Chan TF, Lam HM (2019). A reference-grade wild soybean genome. Nat Commun 10, 1216.
[78] Yang L, Ji W, Gao P, Li Y, Cai H, Bai X, Chen Q, Zhu YM (2012). GsAPK, an ABA-activated and calcium-independent SnRK2-type kinase from G. soja, mediates the regulation of plant tolerance to salinity and ABA stress. PLoS One 3, e33838.
[79] Yang L, Ji W, Zhu YM, Gao P, Li Y, Cai H, Bai X, Guo DJ (2010). GsCBRLK, a calcium/calmodulin-binding receptor-like kinase, is a positive regulator of plant tolerance to salt and ABA stress. J Exp Bot 61, 2519-2533.
[80] Yang L, Wu KC, Gao P, Liu XJ, Li GP, Wu ZJ (2014). GsLRPK, a novel cold-activated leucine-rich repeat receptor-like protein kinase from Glycine soja, is a positive regulator to cold stress tolerance. Plant Sci 215-216, 19-28.
[81] Yu Y, Duan XB, Ding XD, Chen C, Zhu D, Yin KD, Cao L, Song XW, Zhu PH, Li Q, Nisa ZU, Yu JY, Du JY, Song Y, Li HQ, Liu BD, Zhu YM (2017). A novel AP2/ERF family transcription factor from Glycine soja, GsERF71, is a DNA binding protein that positively regulates alkaline stress tolerance in Arabidopsis. Plant Mol Biol 94, 509-530.
[82] Yu Y, Liu AL, Duan XB, Wang ST, Sun XL, Duanmu HZ, Zhu D, Chen C, Cao L, Xiao JL, Li Q, Nisa ZU, Zhu YM, Ding XD (2016). GsERF6, an ethylene-responsive factor from Glycine soja, mediates the regulation of plant bicarbonate tolerance in Arabidopsis. Planta 244, 681-698.
[83] Zeng QY, Yang CY, Ma QB, Li XP, Dong WW, Nian H (2012). Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol 12, 182.
[84] Zhang JL, Wang JX, Jiang W, Liu JG, Yang SN, Gai JY, Li Y (2016). Identification and analysis of NaHCO3 stress responsive genes in wild soybean (Glycine soja) roots by RNA-seq. Front Plant Sci 7, 1842.
[85] Zhou FL, Guo Y, Qiu LJ (2016). Genome-wide identification and evolutionary analysis of leucine-rich repeat receptor-like protein kinase genes in soybean. BMC Plant Biol 16, 58.
[86] Zhou ZK, Jiang Y, Wang Z, Gou ZH, Lyu J, Li WY, Yu YJ, Shu LP, Zhao YJ, Ma YM, Fang C, Shen YT, Liu TF, Li CC, Li Q, Wu M, Wang M, Wu YS, Dong Y, Wan WT, Wang XT, Ding ZL, Gao YD, Xiang H, Zhu BG, Lee SH, Wang W, Tian ZX (2015). Resequencing 302 wild and cultivated accessions identifies genes related to domestication and improvement in soybean. Nat Biotechnol 33, 408-414.
[87] Zhu D, Bai X, Chen C, Chen Q, Cai H, Li Y, Ji W, Zhai H, Lv DK, Luo X, Zhu YM (2011). GsTIFY10, a novel positive regulator of plant tolerance to bicarbonate stress and a repressor of jasmonate signaling. Plant Mol Biol 77, 285-297.
[88] Zhu D, Bai X, Luo X, Chen Q, Cai H, Ji W, Zhu YM (2013). Identification of wild soybean (Glycine soja) TIFY family genes and their expression profiling analysis under bicarbonate stress. Plant Cell Rep 32, 263-272.
[89] Zhu D, Cai H, Luo X, Bai X, Deyholos MK, Chen Q, Chen C, Ji W, Zhu YM (2012). Over-expression of a novel JAZ family gene from Glycine soja, increases salt and alkali stress tolerance. Biochem Biophys Res Commun 426, 273-279.
[90] Zhu D, Li RT, Liu X, Sun MZ, Wu J, Zhang N, Zhu YM (2014). The positive regulatory roles of the TIFY10 proteins in plant responses to alkaline stress. PLoS One 9, e111984.
[91] Zulawski M, Schulze G, Braginets R, Hartmann S, Schulze WX (2014). The Arabidopsis kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics 15, 548.
文章导航

/

674-3466/bottom_cn.htm"-->